Problem

Source: JBMO Shortlist 2018 G5

Tags: geometry, rectangle, area of a triangle, similar triangles, perpendicular



Given a rectangle $ABCD$ such that $AB = b > 2a = BC$, let $E$ be the midpoint of $AD$. On a line parallel to $AB$ through point $E$, a point $G$ is chosen such that the area of $GCE$ is $$(GCE)= \frac12 \left(\frac{a^3}{b}+ab\right)$$Point $H$ is the foot of the perpendicular from $E$ to $GD$ and a point $I$ is taken on the diagonal $AC$ such that the triangles $ACE$ and $AEI$ are similar. The lines $BH$ and $IE$ intersect at $K$ and the lines $CA$ and $EH$ intersect at $J$. Prove that $KJ \perp AB$.