Let $m$ and $n$ be integers greater than $2$, and let $A$ and $B$ be non-constant polynomials with complex coefficients, at least one of which has a degree greater than $1$. Prove that if the degree of the polynomial $A^m-B^n$ is less than $\min(m,n)$, then $A^m=B^n$. Proposed by Tobi Moektijono, Indonesia
2018 Romanian Master of Mathematics Shortlist
Algebra
Combinatorics
Call a point in the Cartesian plane with integer coordinates a $lattice$ $point$. Given a finite set $\mathcal{S}$ of lattice points we repeatedly perform the following operation: given two distinct lattice points $A, B$ in $\mathcal{S}$ and two distinct lattice points $C, D$ not in $\mathcal{S}$ such that $ACBD$ is a parallelogram with $AB > CD$, we replace $A, B$ by $C, D$. Show that only finitely many such operations can be performed. Proposed by Joe Benton, United Kingdom.
Fix integers $n\ge k\ge 2$. We call a collection of integral valued coins $n-diverse$ if no value occurs in it more than $n$ times. Given such a collection, a number $S$ is $n-reachable$ if that collection contains $n$ coins whose sum of values equals $S$. Find the least positive integer $D$ such that for any $n$-diverse collection of $D$ coins there are at least $k$ numbers that are $n$-reachable. Proposed by Alexandar Ivanov, Bulgaria.
$N$ teams take part in a league. Every team plays every other team exactly once during the league, and receives 2 points for each win, 1 point for each draw, and 0 points for each loss. At the end of the league, the sequence of total points in descending order $\mathcal{A} = (a_1 \ge a_2 \ge \cdots \ge a_N )$ is known, as well as which team obtained which score. Find the number of sequences $\mathcal{A}$ such that the outcome of all matches is uniquely determined by this information. Proposed by Dominic Yeo, United Kingdom.
Let $k$ and $s$ be positive integers such that $s<(2k + 1)^2$. Initially, one cell out of an $n \times n$ grid is coloured green. On each turn, we pick some green cell $c$ and colour green some $s$ out of the $(2k + 1)^2$ cells in the $(2k + 1) \times (2k + 1)$ square centred at $c$. No cell may be coloured green twice. We say that $s$ is $k-sparse$ if there exists some positive number $C$ such that, for every positive integer $n$, the total number of green cells after any number of turns is always going to be at most $Cn$. Find, in terms of $k$, the least $k$-sparse integer $s$. Proposed by Nikolai Beluhov.
Geometry
Let $ABC$ be a triangle and let $H$ be the orthogonal projection of $A$ on the line $BC$. Let $K$ be a point on the segment $AH$ such that $AH = 3 KH$. Let $O$ be the circumcenter of triangle $ABC$ and let $M$ and $N$ be the midpoints of sides $AC$ and $AB$ respectively. The lines $KO$ and $MN$ meet at a point $Z$ and the perpendicular at $Z$ to $OK$ meets lines $AB, AC$ at $X$ and $Y$ respectively. Show that $\angle XKY = \angle CKB$. Italy
Let $\triangle ABC$ be a triangle, and let $S$ and $T$ be the midpoints of the sides $BC$ and $CA$, respectively. Suppose $M$ is the midpoint of the segment $ST$ and the circle $\omega$ through $A, M$ and $T$ meets the line $AB$ again at $N$. The tangents of $\omega$ at $M$ and $N$ meet at $P$. Prove that $P$ lies on $BC$ if and only if the triangle $ABC$ is isosceles with apex at $A$. Proposed by Reza Kumara, Indonesia
Number Theory
Determine all polynomials $f$ with integer coefficients such that $f(p)$ is a divisor of $2^p-2$ for every odd prime $p$. Proposed by Italy
Prove that for each positive integer $k$ there exists a number base $b$ along with $k$ triples of Fibonacci numbers $(F_u,F_v,F_w)$ such that when they are written in base $b$, their concatenation is also a Fibonacci number written in base $b$. (Fibonacci numbers are defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all positive integers $n$.) Proposed by Serbia