Problem

Source: 2018 RMM Shortlist C4

Tags: combinatorics



Let $k$ and $s$ be positive integers such that $s<(2k + 1)^2$. Initially, one cell out of an $n \times n$ grid is coloured green. On each turn, we pick some green cell $c$ and colour green some $s$ out of the $(2k + 1)^2$ cells in the $(2k + 1) \times (2k + 1)$ square centred at $c$. No cell may be coloured green twice. We say that $s$ is $k-sparse$ if there exists some positive number $C$ such that, for every positive integer $n$, the total number of green cells after any number of turns is always going to be at most $Cn$. Find, in terms of $k$, the least $k$-sparse integer $s$. Proposed by Nikolai Beluhov.