2012 Bosnia And Herzegovina - Regional Olympiad

Zenica, April 14th

Grade 9

1

Find all possible values of $$\frac{1}{a}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{b+c}\right)+\frac{1}{b}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{c+a}\right)+\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}\right)-\frac{1}{a+b+c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$$where $a$, $b$ and $c$ are positive real numbers such that $ab+bc+ca=abc$

2

Let $a$, $b$, $c$, $d$, $e$, $f$ and $g$ be seven distinct positive integers not bigger than $7$. Find all primes which can be expressed as $abcd+efg$

3

Find remainder when dividing upon $2012$ number $$A=1\cdot2+2\cdot3+3\cdot4+...+2009\cdot2010+2010\cdot2011$$

4

Let $S$ be an incenter of triangle $ABC$ and let incircle touch sides $AC$ and $AB$ in points $P$ and $Q$, respectively. Lines $BS$ and $CS$ intersect line $PQ$ in points $M$ and $N$, respectively. Prove that points $M$, $N$, $B$ and $C$ are concyclic

Grade 10

1

Solve equation $$x^2-\sqrt{a-x}=a$$where $x$ is real number and $a$ is real parameter

2

Harry Potter can do any of the three tricks arbitrary number of times: $i)$ switch $1$ plum and $1$ pear with $2$ apples $ii)$ switch $1$ pear and $1$ apple with $3$ plums $iii)$ switch $1$ apple and $1$ plum with $4$ pears In the beginning, Harry had $2012$ of plums, apples and pears, each. Harry did some tricks and now he has $2012$ apples, $2012$ pears and more than $2012$ plums. What is the minimal number of plums he can have?

3

Quadrilateral $ABCD$ is cyclic. Line through point $D$ parallel with line $BC$ intersects $CA$ in point $P$, line $AB$ in point $Q$ and circumcircle of $ABCD$ in point $R$. Line through point $D$ parallel with line $AB$ intersects $AC$ in point $S$, line $BC$ in point $T$ and circumcircle of $ABCD$ in point $U$. If $PQ=QR$, prove that $ST=TU$

4

Can number $2012^n-3^n$ be perfect square, while $n$ is positive integer

Grade 11

1

For which real numbers $x$ and $\alpha$ inequality holds: $$\log _2 {x}+\log _x {2}+2\cos{\alpha} \leq 0$$

2

On football toornament there were $4$ teams participating. Every team played exactly one match with every other team. For the win, winner gets $3$ points, while if draw both teams get $1$ point. If at the end of tournament every team had different number of points and first place team had $6$ points, find the points of other teams

3

Prove tha number $19 \cdot 8^n +17$ is composite for every positive integer $n$

4

In triangle $ABC$ point $O$ is circumcenter. Point $T$ is centroid of $ABC$, and points $D$, $E$ and $F$ are circumcenters of triangles $TBC$, $TCA$ and $TAB$. Prove that $O$ is centroid of $DEF$

Grade 12

Problem 2 for grade 11 - 1

2

Let $a$, $b$, $c$ and $d$ be integers such that $ac$, $bd$ and $bc+ad$ are divisible with positive integer $m$. Show that numbers $bc$ and $ad$ are divisible with $m$

Problem 4 for grade 11 - 3

4

Prove the inequality: $$\frac{A+a+B+b}{A+a+B+b+c+r}+\frac{B+b+C+c}{B+b+C+c+a+r}>\frac{C+c+A+a}{C+c+A+a+b+r}$$where $A$, $B$, $C$, $a$, $b$, $c$ and $r$ are positive real numbers