if $a$, $b$ and $c$ are real numbers such that $(a-b)(b-c)(c-a) \neq 0$, prove the equality: $\frac{b^2c^2}{(a-b)(a-c)}+\frac{c^2a^2}{(b-c)(b-a)}+\frac{a^2b^2}{(c-a)(c-b)}=ab+bc+ca$
2018 Bosnia And Herzegovina - Regional Olympiad
Sarajevo, March 24th
Grade 9
Determine all triplets $(a,b,c)$ of real numbers such that sets $\{a^2-4c, b^2-2a, c^2-2b \}$ and $\{a-c,b-4c,a+b\}$ are equal and $2a+2b+6=5c$. In every set all elements are pairwise distinct
Let $p$ and $q$ be prime numbers such that $p^2+pq+q^2$ is perfect square. Prove that $p^2-pq+q^2$ is prime
Prove that among arbitrary $13$ points in plane with coordinates as integers, such that no three are collinear, we can pick three points as vertices of triangle such that its centroid has coordinates as integers.
Let $H$ be an orhocenter of an acute triangle $ABC$ and $M$ midpoint of side $BC$. If $D$ and $E$ are foots of perpendicular of $H$ on internal and external angle bisector of angle $\angle BAC$, prove that $M$, $D$ and $E$ are collinear
Grade 10
Show that system of equations $2ab=6(a+b)-13$ $a^2+b^2=4$ has not solutions in set of real numbers.
Find all positive integers $n$ such that number $n^4-4n^3+22n^2-36n+18$ is perfect square of positive integer
Solve equation $x \lfloor{x}\rfloor+\{x\}=2018$, where $x$ is real number
Let $P$ be a point on circumcircle of triangle $ABC$ on arc $\stackrel{\frown}{BC}$ which does not contain point $A$. Let lines $AB$ and $CP$ intersect at point $E$, and lines $AC$ and $BP$ intersect at $F$. If perpendicular bisector of side $AB$ intersects $AC$ in point $K$, and perpendicular bisector of side $AC$ intersects side $AB$ in point $J$, prove that: ${\left(\frac{CE}{BF}\right)}^2=\frac{AJ\cdot JE}{AK \cdot KF}$
Board with dimesions $2018 \times 2018$ is divided in unit cells $1 \times 1$. In some cells of board are placed black chips and in some white chips (in every cell maximum is one chip). Firstly we remove all black chips from columns which contain white chips, and then we remove all white chips from rows which contain black chips. If $W$ is number of remaining white chips, and $B$ number of remaining black chips on board and $A=min\{W,B\}$, determine maximum of $A$
Grade 11
Find all values of real parameter $a$ for which equation $2{\sin}^4(x)+{\cos}^4(x)=a$ has real solutions
Let $a_1, a_2,...,a_{2018}$ be a sequence of numbers such that all its elements are elements of a set $\{-1,1\}$. Sum $$S=\sum \limits_{1 \leq i < j \leq 2018} a_i a_j$$can be negative and can also be positive. Find the minimal value of this sum
In triangle $ABC$ given is point $P$ such that $\angle ACP = \angle ABP = 10^{\circ}$, $\angle CAP = 20^{\circ}$ and $\angle BAP = 30^{\circ}$. Prove that $AC=BC$
We observe that number $10001=73\cdot137$ is not prime. Show that every member of infinite sequence $10001, 100010001, 1000100010001,...$ is not prime
It is given $2018$ points in plane. Prove that it is possible to cover them with circles such that: $i)$ sum of lengths of all diameters of all circles is not greater than $2018$ $ii)$ distance between any two circles is greater than $1$
Grade 12
$a)$ Prove that for all positive integers $n \geq 3$ holds: $$\binom{n}{1}+\binom{n}{2}+...+\binom{n}{n-1}=2^n-2$$where $\binom{n}{k}$ , with integer $k$ such that $n \geq k \geq 0$, is binomial coefficent $b)$ Let $n \geq 3$ be an odd positive integer. Prove that set $A=\left\{ \binom{n}{1},\binom{n}{2},...,\binom{n}{\frac{n-1}{2}} \right\}$ has odd number of odd numbers
Problem $4$ from grade 11 - 2
If numbers $x_1$, $x_2$,...,$x_n$ are from interval $\left( \frac{1}{4},1 \right)$ prove the inequality: $\log _{x_1} {\left(x_2-\frac{1}{4} \right)} + \log _{x_2} {\left(x_3-\frac{1}{4} \right)}+ ... + \log _{x_{n-1}} {\left(x_n-\frac{1}{4} \right)} + \log _{x_n} {\left(x_1-\frac{1}{4} \right)} \geq 2n$
Let $ABCD$ be a cyclic quadrilateral and let $k_1$ and $k_2$ be circles inscribed in triangles $ABC$ and $ABD$. Prove that external common tangent of those circles (different from $AB$) is parallel with $CD$
Problem $5$ from grade 11 - 5