2015 Silk Road

1

Prove that there is no positive real numbers $a,b,c,d$ such that both of the following equations hold.$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=6 , \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}=32$$.

2

Let $\left\{ {{a}_{n}} \right\}_{n \geq 1}$ and $\left\{ {{b}_{n}} \right\}_{n \geq 1}$ be two infinite arithmetic progressions, each of which the first term and the difference are mutually prime natural numbers. It is known that for any natural $n$, at least one of the numbers $\left( a_n^2+a_{n+1}^2 \right)\left( b_n^2+b_{n+1}^2 \right) $ or $\left( a_n^2+b_n^2 \right) \left( a_{n+1}^2+b_{n+1}^2 \right)$ is an perfect square. Prove that ${{a}_{n}}={{b}_{n}}$, for any natural $n$ .

3

Let $B_n$ be the set of all sequences of length $n$, consisting of zeros and ones. For every two sequences $a,b \in B_n$ (not necessarily different) we define strings $\varepsilon_0\varepsilon_1\varepsilon_2 \dots \varepsilon_n$ and $\delta_0\delta_1\delta_2 \dots \delta_n$ such that $\varepsilon_0=\delta_0=0$ and $$ \varepsilon_{i+1}=(\delta_i-a_{i+1})(\delta_i-b_{i+1}), \quad \delta_{i+1}=\delta_i+(-1)^{\delta_i}\varepsilon_{i+1} \quad (0 \leq i \leq n-1). $$. Let $w(a,b)=\varepsilon_0+\varepsilon_1+\varepsilon_2+\dots +\varepsilon_n$ . Find $f(n)=\sum\limits_{a,b \in {B_n}} {w(a,b)} $. .

4

Let $O$ be a circumcenter of an acute-angled triangle $ABC$. Consider two circles $\omega$ and $\Omega$ inscribed in the angle $\angle BAC$ in such way that $\omega$ is tangent from the outside to the arc $BOC$ of a circle circumscribed about the triangle $BOC$, and the circle $\Omega$ is tangent internally to a circumcircle of triangle $ABC$. Prove that the radius of $\Omega$ is twice the radius $\omega$.

1 (original)

Given positive real numbers $a,b,c,d$ such that $ \frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=6 \quad \text{and} \quad \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}=36.$ Prove the inequality ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}>ab+ac+ad+bc+bd+cd.$