Problem

Source: SRMC 2015

Tags: Perfect Square, Arithmetic Progression, number theory, Sequences, Sequence



Let $\left\{ {{a}_{n}} \right\}_{n \geq 1}$ and $\left\{ {{b}_{n}} \right\}_{n \geq 1}$ be two infinite arithmetic progressions, each of which the first term and the difference are mutually prime natural numbers. It is known that for any natural $n$, at least one of the numbers $\left( a_n^2+a_{n+1}^2 \right)\left( b_n^2+b_{n+1}^2 \right) $ or $\left( a_n^2+b_n^2 \right) \left( a_{n+1}^2+b_{n+1}^2 \right)$ is an perfect square. Prove that ${{a}_{n}}={{b}_{n}}$, for any natural $n$ .