2007 Sharygin Geometry Olympiad

First (Correspodence) Round

1

A triangle is cut into several (not less than two) triangles. One of them is isosceles (not equilateral), and all others are equilateral. Determine the angles of the original triangle.

2

Each diagonal of a quadrangle divides it into two isosceles triangles. Is it true that the quadrangle is a diamond?

3

Segments connecting an inner point of a convex non-equilateral n-gon to its vertices divide the n-gon into n equal triangles. What is the least possible n?

4

Does a parallelogram exist such that all pairwise meets of bisectors of its angles are situated outside it?

5

A non-convex $n$-gon is cut into three parts by a straight line, and two parts are put together so that the resulting polygon is equal to the third part. Can $n$ be equal to: a) five? b) four?

6

a) What can be the number of symmetry axes of a checked polygon, that is, of a polygon whose sides lie on lines of a list of checked paper? (Indicate all possible values.) b) What can be the number of symmetry axes of a checked polyhedron, that is, of a polyhedron consisting of equal cubes which border one to another by plane facets?

7

A convex polygon is circumscribed around a circle. Points of contact of its sides with the circle form a polygon with the same set of angles (the order of angles may differ). Is it true that the polygon is regular?

8

Three circles pass through a point $P$, and the second points of their intersection $A, B, C$ lie on a straight line. Let $A_1 B_1, C_1$ be the second meets of lines $AP, BP, CP$ with the corresponding circles. Let $C_2$ be the intersections of lines $AB_1$ and $BA_1$. Let $A_2, B_2$ be defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal,

9

Suppose two convex quadrangles are such that the sides of each of them lie on the perpendicular bisectors of the sides of the other one. Determine their angles,

10

Find the locus of centers of regular triangles such that three given points $A, B, C$ lie respectively on three lines containing sides of the triangle.

11

A boy and his father are standing on a seashore. If the boy stands on his tiptoes, his eyes are at a height of $1$ m above sea-level, and if he seats on father’s shoulders, they are at a height of $2$ m. What is the ratio of distances visible for him in two eases? (Find the answer to $0,1$, assuming that the radius of Earth equals $6000$ km.)

12

A rectangle $ABCD$ and a point $P$ are given. Lines passing through $A$ and $B$ and perpendicular to $PC$ and $PD$ respectively, meet at a point $Q$. Prove that $PQ \perp AB$.

13

On the side $AB$ of a triangle $ABC$, two points $X, Y$ are chosen so that $AX = BY$. Lines $CX$ and $CY$ meet the circumcircle of the triangle, for the second time, at points $U$ and $V$. Prove that all lines $UV$ (for all $X, Y$, given $A, B, C$) have a common point.

14

In a trapezium with bases $AD$ and $BC$, let $P$ and $Q$ be the middles of diagonals $AC$ and $BD$ respectively. Prove that if $\angle DAQ = \angle CAB$ then $\angle PBA = \angle DBC$.

15

In a triangle $ABC$, let $AA', BB'$ and $CC'$ be the bisectors. Suppose $A'B' \cap CC' =P$ and $A'C' \cap BB'= Q$. Prove that $\angle PAC = \angle QAB$.

16

On two sides of an angle, points $A, B$ are chosen. The midpoint $M$ of the segment $AB$ belongs to two lines such that one of them meets the sides of the angle at points $A_1, B_1$, and the other at points $A_2, B_2$. The lines $A_1B_2$ and $A_2B_1$ meet $AB$ at points $P$ and $Q$. Prove that $M$ is the midpoint of $PQ$.

17

What triangles can be cut into three triangles having equal radii of circumcircles?

18

Determine the locus of vertices of triangles which have prescribed orthocenter and center of circumcircle.

19

Into an angle $A$ of size $a$, a circle is inscribed tangent to its sides at points $B$ and $C$. A line tangent to this circle at a point M meets the segments $AB$ and $AC$ at points $P$ and $Q$ respectively. What is the minimum $a$ such that the inequality $S_{PAQ}<S_{BMC}$ is possible?

20

The base of a pyramid is a regular triangle having side of size $1$. Two of three angles at the vertex of the pyramid are right. Find the maximum value of the volume of the pyramid.

21

There are two pipes on the plane (the pipes are circular cylinders of equal size, $4$ m around). Two of them are parallel and, being tangent one to another in the common generatrix, form a tunnel over the plane. The third pipe is perpendicular to two others and cuts out a chamber in the tunnel. Determine the area of the surface of this chamber.

Final Round

grade 8

1

Determine on which side is the steering wheel disposed in the car depicted in the figure.

2

By straightedge and compass, reconstruct a right triangle $ABC$ ($\angle C = 90^o$), given the vertices $A, C$ and a point on the bisector of angle $B$.

3

The diagonals of a convex quadrilateral dissect it into four similar triangles. Prove that this quadrilateral can also be dissected into two congruent triangles.

4

Determine the locus of orthocenters of triangles, given the midpoint of a side and the feet of the altitudes drawn on two other sides.

5

Medians $AA'$ and $BB'$ of triangle $ABC$ meet at point $M$, and $\angle AMB = 120^o$. Prove that angles $AB'M$ and $BA'M$ are neither both acute nor both obtuse.

6

Two non-congruent triangles are called analogous if they can be denoted as $ABC$ and $A'B'C'$ such that $AB = A'B', AC = A'C'$ and $\angle B = \angle B'$ . Do there exist three mutually analogous triangles?

grade 9

1

Given a circumscribed quadrilateral $ABCD$. Prove that its inradius is smaller than the sum of the inradii of triangles $ABC$ and $ACD$.

2

Points $E$ and $F$ are chosen on the base side $AD$ and the lateral side $AB$ of an isosceles trapezoid $ABCD$, respectively. Quadrilateral $CDEF$ is an isosceles trapezoid as well. Prove that $AE \cdot ED = AF \cdot FB$.

3

Given a hexagon $ABCDEF$ such that $AB=BC$, $CD=DE$ , $EF=FA$ and $\angle A = \angle C = \angle E $ Prove that $AD, BE, CF$ are concurrent.

4

Given a triangle $ABC$. An arbitrary point $P$ is chosen on the circumcircle of triangle $ABH$ ($H$ is the orthocenter of triangle $ABC$). Lines $AP$ and $BP$ meet the opposite sidelines of the triangle at points $A' $ and $B'$, respectively. Determine the locus of midpoints of segments $A'B'$.

5

Reconstruct a triangle, given the incenter, the midpoint of some side and the foot of the altitude drawn on this side.

6

A cube with edge length $2n+ 1$ is dissected into small cubes of size $1\times 1\times 1$ and bars of size $2\times 2\times 1$. Find the least possible number of cubes in such a dissection.

grade 10

1

In an acute triangle $ABC$, altitudes at vertices $A$ and $B$ and bisector line at angle $C$ intersect the circumcircle again at points $A_1, B_1$ and $C_0$. Using the straightedge and compass, reconstruct the triangle by points $A_1, B_1$ and $C_0$.

2

Points $A', B', C'$ are the feet of the altitudes $AA', BB'$ and $CC'$ of an acute triangle $ABC$. A circle with center $B$ and radius $BB'$ meets line $A'C'$ at points $K$ and $L$ (points $K$ and $A$ are on the same side of line $BB'$). Prove that the intersection point of lines $AK$ and $CL$ belongs to line $BO$ ($O$ is the circumcenter of triangle $ABC$).

3

Given two circles intersecting at points $P$ and $Q$. Let C be an arbitrary point distinct from $P$ and $Q$ on the former circle. Let lines $CP$ and $CQ$ intersect again the latter circle at points A and B, respectively. Determine the locus of the circumcenters of triangles $ABC$.

4

A quadrilateral A$BCD$ is inscribed into a circle with center $O$. Points $C', D'$ are the reflections of the orthocenters of triangles $ABD$ and $ABC$ at point $O$. Lines $BD$ and $BD'$ are symmetric with respect to the bisector of angle $ABC$. Prove that lines $AC$ and $AC'$ are symmetric with respect to the bisector of angle $DAB$.

5

Each edge of a convex polyhedron is shifted such that the obtained edges form the frame of another convex polyhedron. Are these two polyhedra necessarily congruent?

6

Given are two concentric circles $\Omega$ and $\omega$. Each of the circles $b_1$ and $b_2$ is externally tangent to $\omega$ and internally tangent to $\Omega$, and $\omega$ each of the circles $c_1$ and $c_2$ is internally tangent to both $\Omega$ and $\omega$. Mark each point where one of the circles $b_1, b_2$ intersects one of the circles $c_1$ and $c_2$. Prove that there exist two circles distinct from $b_1, b_2, c_1, c_2$ which contain all $8$ marked points. (Some of these new circles may appear to be lines.)