Given the midpoint $M(0,0)$ of the side $AB$. Given the bases of the altitudes $H_{1}(a,b)$ and $H_{2}(c,d)$, point $H_{1} \in AC$ and point $H_{2} \in BC$.
Condition!
$AH_{2} \bot BC \Rightarrow \triangle H_{2}AB$ is rectangular and $H_{2}M =\frac{1}{2}AB =r$.
$BH_{1} \bot AC \Rightarrow \triangle H_{1}AB$ is rectangular and $H_{1}M =\frac{1}{2}AB =r$.
Then $H_{2}M =H_{1}M =r$ and $a^{2}+b^{2}=c^{2}+d^{2}=r^{2}$.
The points $H_{1},H_{2},A,B$ are lying on a circle with radius $r$.
$A(r\cos \alpha,r\sin \alpha)$ and $B(-r\cos \alpha, -r\sin \alpha)$.
The lines $AH_{2}$ and $BH_{1}$ cut in the orthocenter of $\triangle ABC$.
Eliminating the parameter $\alpha$, we find the circle $x^{2}+y^{2}-\frac{2(ac-bd+r^{2})}{a+c}\cdot x-\frac{2(ad+bc)}{a+c}\cdot y+r^{2}=0$,
the circle going through $H_{1}$ and $H_{2}$.