Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have both of their neighbours remained and exactly one third of the dwarves have only one of their neighbours remained, if the number of the dwarves is a) 6; b) 9?
2017 Kyiv Mathematical Festival
Grade level 8
A triangle $ABC$ is given. Let $D$ be a point on the extension of the segment $AB$ beyond $A$ such that $AD=BC,$ and $E$ be a point on the extension of the segment $BC$ beyond $B$ such that $BE=AC.$ Prove that the circumcircle of the triangle $DEB$ passes through the incenter of the triangle $ABC.$
Each cell of a $7\times7$ table is painted with one of several colours. It is known that for any two distinct rows the numbers of colours used to paint them are distinct and for any two distinct columns the numbers of colours used to paint them are distinct.What is the maximum possible number of colours in the table?
Two players in turn put two or three coins into their own hats (before the game starts, the hats are empty). Each time, after both players made five moves, they exchange hats.The player wins, if after his move his hat contains one hundred or more coins. Which player has a winning strategy?
Find all the pairs of integers $(x,y)$ for which $(x^2+y)(y^2+x)=(x+1)(y+1).$
Grade level 9
same as grade 8 problem 1 - 1
same as grade 8 problem 3 - 2
A point $C$ is marked on a chord $AB$ of a circle $\omega.$ Let $D$ be the midpoint of $AC,$ and $O$ be the center of the circle $\omega.$ The circumcircle of the triangle $BOD$ intersects the circle $\omega$ again at point $E$ and the straight line $OC$ again at point $F.$ Prove that the circumcircle of the triangle $CEF$ touches $AB.$
Real numbers $x,y$ are such that $x^2\ge y$ and $y^2\ge x.$ Prove that $\frac{x}{y^2+1}+\frac{y}{x^2+1}\le1.$
Two players in turn put two or three coins into their own hats (before the game starts, the hats are empty). Each time, after the second player duplicated the move of the first player, they exchange hats. The player wins, if after his move his hat contains one hundred or more coins. Which player has a winning strategy?
Grade level 10
Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have two new neighbours and exactly one third of the dwarves have only one new neighbour, if the number of the dwarves is a) 9; b) 12?
same as grade 9 problem 4 - 2
same as grade 9 problem 3 - 3
same as grade 9 problem 5 - 4
A triangle $ABC$ is given on the plane, such that all its vertices have integer coordinates. Does there necessarily exist a straight line which intersects the straight lines $AB,$ $BC,$ and $AC$ at three distinct points with integer coordinates?