Real numbers $x,y$ are such that $x^2\ge y$ and $y^2\ge x.$ Prove that $\frac{x}{y^2+1}+\frac{y}{x^2+1}\le1.$
Problem
Source: Kyiv mathematical festival 2017
Tags: inequalities, Kyiv mathematical festival
08.05.2017 03:51
08.05.2017 04:36
08.05.2017 12:02
We need to prove $x^3+x+y^3+y\leq x^2y^2+x^2+y^2+1$ $2(x^2y^2+x^2+y^2+1)-2(x^3+x+y^3+y)=2(x^2-y)(y^2-x)+(x-1)^2+(y-1)^2+(x-y)^2\geq 0$
08.05.2017 13:26
RagvaloD wrote: We need to prove $x^3+x+y^3+y\leq x^2y^2+x^2+y^2+1$ $2(x^2y^2+x^2+y^2+1)-2(x^3+x+y^3+y)=2(x^2-y)(y^2-x)+(x-1)^2+(y-1)^2+(x-y)^2\geq 0$ $x^2y^2+x^2+y^2+1-(x^3+x+y^3+y)$ $=(x^2-y)(y^2-x)+\frac{1}{2}\left((x-1)^2+(y-1)^2+(x-y)^2\right)\geq 0$ Very very nice.
10.09.2017 14:34
sqing,RagvaloD, may I ask that where did the idea of using $(x^2-y)(y^2-x)$? I mean I get why did you use those two numbers, but how did you get the idea of looking at the product of the two?