2018 China Team Selection Test

Day 1 - Test 1

1

Let $p,q$ be positive reals with sum 1. Show that for any $n$-tuple of reals $(y_1,y_2,...,y_n)$, there exists an $n$-tuple of reals $(x_1,x_2,...,x_n)$ satisfying $$p\cdot \max\{x_i,x_{i+1}\} + q\cdot \min\{x_i,x_{i+1}\} = y_i$$for all $i=1,2,...,2017$, where $x_{2018}=x_1$.

2

A number $n$ is interesting if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.

3

Circle $\omega$ is tangent to sides $AB$,$AC$ of triangle $ABC$ at $D$,$E$ respectively, such that $D\neq B$, $E\neq C$ and $BD+CE<BC$. $F$,$G$ lies on $BC$ such that $BF=BD$, $CG=CE$. Let $DG$ and $EF$ meet at $K$. $L$ lies on minor arc $DE$ of $\omega$, such that the tangent of $L$ to $\omega$ is parallel to $BC$. Prove that the incenter of $\triangle ABC$ lies on $KL$.

Day 2 - Test 1

4

Functions $f,g:\mathbb{Z}\to\mathbb{Z}$ satisfy $$f(g(x)+y)=g(f(y)+x)$$for any integers $x,y$. If $f$ is bounded, prove that $g$ is periodic.

5

Given a positive integer $k$, call $n$ good if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.

6

Let $A_1$, $A_2$, $\cdots$, $A_m$ be $m$ subsets of a set of size $n$. Prove that $$ \sum_{i=1}^{m} \sum_{j=1}^{m}|A_i|\cdot |A_i \cap A_j|\geq \frac{1}{mn}\left(\sum_{i=1}^{m}|A_i|\right)^3.$$

Day 1 - Test 2

1

Given a triangle $ABC$. $D$ is a moving point on the edge $BC$. Point $E$ and Point $F$ are on the edge $AB$ and $AC$, respectively, such that $BE=CD$ and $CF=BD$. The circumcircle of $\triangle BDE$ and $\triangle CDF$ intersects at another point $P$ other than $D$. Prove that there exists a fixed point $Q$, such that the length of $QP$ is constant.

2

An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. Quote: For example, 4 can be partitioned in five distinct ways: 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1 The number of partitions of n is given by the partition function $p\left ( n \right )$. So $p\left ( 4 \right ) = 5$ . Determine all the positive integers so that $p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right )$.

3

Two positive integers $p,q \in \mathbf{Z}^{+}$ are given. There is a blackboard with $n$ positive integers written on it. A operation is to choose two same number $a,a$ written on the blackboard, and replace them with $a+p,a+q$. Determine the smallest $n$ so that such operation can go on infinitely.

Day 2 - Test 2

4

Let $k, M$ be positive integers such that $k-1$ is not squarefree. Prove that there exist a positive real $\alpha$, such that $\lfloor \alpha\cdot k^n \rfloor$ and $M$ are coprime for any positive integer $n$.

5

Given positive integers $n, k$ such that $n\ge 4k$, find the minimal value $\lambda=\lambda(n,k)$ such that for any positive reals $a_1,a_2,\ldots,a_n$, we have \[ \sum\limits_{i=1}^{n} {\frac{{a}_{i}}{\sqrt{{a}_{i}^{2}+{a}_{{i}+{1}}^{2}+{\cdots}{{+}}{a}_{{i}{+}{k}}^{2}}}} \le \lambda\]Where $a_{n+i}=a_i,i=1,2,\ldots,k$

6

Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions: (1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$ (2) For all $n\ge M$, $f(n)\ge 0$ (3) For all $n>m>M$, $n-m|f(n)-f(m)$ Show that $a$ is a perfect $r$-th power.

Day 1 - Test3

1

Let $\omega_1,\omega_2$ be two non-intersecting circles, with circumcenters $O_1,O_2$ respectively, and radii $r_1,r_2$ respectively where $r_1 < r_2$. Let $AB,XY$ be the two internal common tangents of $\omega_1,\omega_2$, where $A,X$ lie on $\omega_1$, $B,Y$ lie on $\omega_2$. The circle with diameter $AB$ meets $\omega_1,\omega_2$ at $P$ and $Q$ respectively. If $$\angle AO_1P+\angle BO_2Q=180^{\circ},$$find the value of $\frac{PX}{QY}$ (in terms of $r_1,r_2$).

2

Let $G$ be a simple graph with 100 vertices such that for each vertice $u$, there exists a vertice $v \in N \left ( u \right )$ and $ N \left ( u \right ) \cap N \left ( v \right ) = \o $. Try to find the maximal possible number of edges in $G$. The $ N \left ( . \right )$ refers to the neighborhood.

3

Prove that there exists a constant $C>0$ such that $$H(a_1)+H(a_2)+\cdots+H(a_m)\leq C\sqrt{\sum_{i=1}^{m}i a_i}$$holds for arbitrary positive integer $m$ and any $m$ positive integer $a_1,a_2,\cdots,a_m$, where $$H(n)=\sum_{k=1}^{n}\frac{1}{k}.$$

Day 2 - Test 3

4

Suppose $A_1,A_2,\cdots ,A_n \subseteq \left \{ 1,2,\cdots ,2018 \right \}$ and $\left | A_i \right |=2, i=1,2,\cdots ,n$, satisfying that $$A_i + A_j, \; 1 \le i \le j \le n ,$$are distinct from each other. $A + B = \left \{ a+b|a\in A,\,b\in B \right \}$. Determine the maximal value of $n$.

5

Let $ABC$ be a triangle with $\angle BAC > 90 ^{\circ}$, and let $O$ be its circumcenter and $\omega$ be its circumcircle. The tangent line of $\omega$ at $A$ intersects the tangent line of $\omega$ at $B$ and $C$ respectively at point $P$ and $Q$. Let $D,E$ be the feet of the altitudes from $P,Q$ onto $BC$, respectively. $F,G$ are two points on $\overline{PQ}$ different from $A$, so that $A,F,B,E$ and $A,G,C,D$ are both concyclic. Let M be the midpoint of $\overline{DE}$. Prove that $DF,OM,EG$ are concurrent.

6

Find all pairs of positive integers $(x, y)$ such that $(xy+1)(xy+x+2)$ be a perfect square .

Day 1 - Test 4

1

Define the polymonial sequence $\left \{ f_n\left ( x \right ) \right \}_{n\ge 1}$ with $f_1\left ( x \right )=1$, $$f_{2n}\left ( x \right )=xf_n\left ( x \right ), \; f_{2n+1}\left ( x \right ) = f_n\left ( x \right )+ f_{n+1} \left ( x \right ), \; n\ge 1.$$Look for all the rational number $a$ which is a root of certain $f_n\left ( x \right ).$

2

There are $32$ students in the class with $10$ interesting group. Each group contains exactly $16$ students. For each couple of students, the square of the number of the groups which are only involved by just one of the two students is defined as their $interests-disparity$. Define $S$ as the sum of the $interests-disparity$ of all the couples, $\binom{32}{2}\left ( =\: 496 \right )$ ones in total. Determine the minimal possible value of $S$.

3

In isosceles $\triangle ABC$, $AB=AC$, points $D,E,F$ lie on segments $BC,AC,AB$ such that $DE\parallel AB$, $DF\parallel AC$. The circumcircle of $\triangle ABC$ $\omega_1$ and the circumcircle of $\triangle AEF$ $\omega_2$ intersect at $A,G$. Let $DE$ meet $\omega_2$ at $K\neq E$. Points $L,M$ lie on $\omega_1,\omega_2$ respectively such that $LG\perp KG, MG\perp CG$. Let $P,Q$ be the circumcenters of $\triangle DGL$ and $\triangle DGM$ respectively. Prove that $A,G,P,Q$ are concyclic.

Day 2 - Test 4

4

Let $p$ be a prime and $k$ be a positive integer. Set $S$ contains all positive integers $a$ satisfying $1\le a \le p-1$, and there exists positive integer $x$ such that $x^k\equiv a \pmod p$. Suppose that $3\le |S| \le p-2$. Prove that the elements of $S$, when arranged in increasing order, does not form an arithmetic progression.

5

Suppose the real number $\lambda \in \left( 0,1\right),$ and let $n$ be a positive integer. Prove that the modulus of all the roots of the polynomial $$f\left ( x \right )=\sum_{k=0}^{n}\binom{n}{k}\lambda^{k\left ( n-k \right )}x^{k}$$are $1.$

6

Suppose $a_i, b_i, c_i, i=1,2,\cdots ,n$, are $3n$ real numbers in the interval $\left [ 0,1 \right ].$ Define $$S=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k<1 \right \}, \; \; T=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k>2 \right \}.$$Now we know that $\left | S \right |\ge 2018,\, \left | T \right |\ge 2018.$ Try to find the minimal possible value of $n$.