Circle $\omega$ is tangent to sides $AB$,$AC$ of triangle $ABC$ at $D$,$E$ respectively, such that $D\neq B$, $E\neq C$ and $BD+CE<BC$. $F$,$G$ lies on $BC$ such that $BF=BD$, $CG=CE$. Let $DG$ and $EF$ meet at $K$. $L$ lies on minor arc $DE$ of $\omega$, such that the tangent of $L$ to $\omega$ is parallel to $BC$. Prove that the incenter of $\triangle ABC$ lies on $KL$.
Problem
Source: China TST 1 Day 1 Q3
Tags: geometry, TST
02.01.2018 08:20
Lemma: Let $ABCD$ be a cyclic quadrilateral with circumcenter $O.$ Denote $E \equiv AC \cap BD$ and $F \equiv AB \cap CD.$ Let $F'$ be the antipode of $F$ on $\odot(FBC).$ Then $O, E, F'$ are collinear. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 988.2182932954984, xmax = 1068.0180462919977, ymin = 1000.5589207237306, ymax = 1041.1134898172131; /* image dimensions */ pen evefev = rgb(0.8980392156862745,0.9372549019607843,0.8980392156862745); pen qqwuqq = rgb(0.,0.39215686274509803,0.); filldraw((1028.992765986746,1028.5133767685782)--(1028.4445865189664,1027.9704143831332)--(1028.9875489044111,1027.4222349153533)--(1029.535728372191,1027.9651973007983)--cycle, evefev, linewidth(0.8) + qqwuqq); Label laxis; laxis.p = fontsize(10); xaxis(xmin, xmax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); yaxis(ymin, ymax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */ /* draw figures */ draw(circle((1014.2460788614324,1012.8210610116407), 10.947073866713888), linewidth(0.8)); draw(circle((1013.8749203829444,1022.6412957550035), 16.54100464135123), linewidth(0.8) + linetype("2 2") + blue); draw((1003.8102533249038,1009.5147077917898)--(1019.3483333013737,1038.2504784872792), linewidth(0.8)); draw((1019.3483333013737,1038.2504784872792)--(1024.901704683554,1010.3118650084917), linewidth(0.8)); draw((1024.901704683554,1010.3118650084917)--(1011.2988442336773,1023.3639370088367), linewidth(0.8)); draw((1011.2988442336773,1023.3639370088367)--(1046.2228815301826,1011.1177047633228), linewidth(0.8)); draw((1046.2228815301826,1011.1177047633228)--(1019.3483333013737,1038.2504784872792), linewidth(0.8) + red); draw((1003.8102533249038,1009.5147077917898)--(1046.2228815301826,1011.1177047633228), linewidth(0.8)); draw((1008.4015074645152,1007.0321130227279)--(1029.535728372191,1027.9651973007983), linewidth(0.8) + dotted); draw((1003.8102533249038,1009.5147077917898)--(1023.1321114660558,1019.2145616797301), linewidth(0.8)); /* dots and labels */ dot((1011.2988442336773,1023.3639370088367),linewidth(3.pt) + dotstyle); label("$A$", (1010.7688160201244,1023.6550206110503), N * labelscalefactor); dot((1003.8102533249038,1009.5147077917898),linewidth(3.pt) + dotstyle); label("$B$", (1002.803389444813,1008.3788600556578), W * labelscalefactor); dot((1024.901704683554,1010.3118650084917),linewidth(3.pt) + dotstyle); label("$C$", (1025.0629376826696,1009.0335526508889), E * labelscalefactor); dot((1023.1321114660558,1019.2145616797301),linewidth(3.pt) + dotstyle); label("$D$", (1023.2807189512073,1019.4358905528943), NE * labelscalefactor); dot((1018.2024929102992,1016.7398214469407),linewidth(3.pt) + dotstyle); label("$E$", (1017.6430882700507,1017.3626973346624), NE * labelscalefactor); dot((1019.3483333013737,1038.2504784872792),linewidth(3.pt) + dotstyle); label("$F$", (1019.4980506232055,1038.4583476254425), NE * labelscalefactor); dot((1014.2460788614324,1012.8210610116407),linewidth(3.pt) + dotstyle); label("$O$", (1014.3696252938954,1011.5795794101209), E * labelscalefactor); dot((1008.4015074645152,1007.0321130227279),linewidth(3.pt) + dotstyle); label("$F'$", (1008.0045583958155,1005.5054869988102), E * labelscalefactor); dot((1046.2228815301826,1011.1177047633228),linewidth(3.pt) + dotstyle); label("$G$", (1046.7041651361415,1010.0519633545817), NE * labelscalefactor); dot((1029.535728372191,1027.9651973007983),linewidth(3.pt) + dotstyle); label("$M$", (1029.6821576601335,1028.2014969668219), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Proof: Denote $G \equiv AD \cap BC$ and let $M$ be the Miquel point of $ABCD.$ It is known that $O, E, M$ are collinear, and $OM \perp FG.$ On the other hand, since $M \in \odot(FBC)$ and $\overline{FF'}$ is a diameter of this circle, we have $F'M \perp FG.$ Therefore, $O, E, F'$ are collinear. $\blacksquare$ __________________________________________________________________________________________________________________________________________________ Main Proof: Let $I$ be the incenter of $\triangle ABC.$ Note that $AI$ is the perpendicular bisector of $\overline{DE}$; also, $F$ is the reflection of $D$ in $IB$ and $G$ is the reflection of $E$ in $IC.$ It follows that $IF = ID = IE = IG.$ Therefore, $DEGF$ is cyclic with circumcenter $I.$ [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(15cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 983.8150410180909, xmax = 1049.4664952960939, ymin = 997.8046374990395, ymax = 1031.1689818563664; /* image dimensions */ pen fsfsfs = rgb(0.9490196078431372,0.9490196078431372,0.9490196078431372); pen evfuff = rgb(0.8980392156862745,0.9568627450980393,1.); pen qqzzff = rgb(0.,0.6,1.); filldraw((1002.3155835435821,1028.2479023843553)--(997.5658551273822,1009.082914299408)--(1021.4141418604702,1009.1493440674667)--cycle, fsfsfs, linewidth(0.8) + gray); filldraw((1007.5274341255129,1000.0825257520867)--(1014.231628649713,1016.3318572782222)--(998.261773264589,1011.8909196502241)--cycle, evfuff, linewidth(0.8) + qqzzff); Label laxis; laxis.p = fontsize(10); xaxis(xmin, xmax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); yaxis(ymin, ymax, Ticks(laxis, Step = 2., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */ /* draw figures */ draw((1002.3155835435821,1028.2479023843553)--(997.5658551273822,1009.082914299408), linewidth(0.8) + gray); draw((997.5658551273822,1009.082914299408)--(1021.4141418604702,1009.1493440674667), linewidth(0.8) + gray); draw((1021.4141418604702,1009.1493440674667)--(1002.3155835435821,1028.2479023843553), linewidth(0.8) + gray); draw(circle((1007.5009198560632,1009.6011484845728), 9.518659660361699), linewidth(0.8)); draw(circle((1005.8396671765145,1015.5751042733898), 8.42601284582261), linewidth(0.8) + linetype("2 2") + red); draw((1007.5274341255129,1000.0825257520867)--(1014.231628649713,1016.3318572782222), linewidth(0.8) + qqzzff); draw((1014.231628649713,1016.3318572782222)--(998.261773264589,1011.8909196502241), linewidth(0.8) + qqzzff); draw((998.261773264589,1011.8909196502241)--(1007.5274341255129,1000.0825257520867), linewidth(0.8) + qqzzff); draw(circle((1005.8396671765147,1015.5751042733892), 6.469118046555144), linewidth(0.8)); draw((998.261773264589,1011.8909196502241)--(1011.2565736725893,1009.121050005663), linewidth(0.8)); draw((1000.4588001954772,1009.0909726422188)--(1014.231628649713,1016.3318572782222), linewidth(0.8)); /* dots and labels */ dot((1002.3155835435821,1028.2479023843553),linewidth(3.pt) + dotstyle); label("$A$", (1001.888641010759,1028.71528119511), NE * labelscalefactor); dot((997.5658551273822,1009.082914299408),linewidth(3.pt) + dotstyle); label("$B$", (996.6820079002883,1008.0982110047978), N * labelscalefactor); dot((1021.4141418604702,1009.1493440674667),linewidth(3.pt) + dotstyle); label("$C$", (1021.7277085523798,1008.217903719981), NE * labelscalefactor); dot((998.261773264589,1011.8909196502241),linewidth(3.pt) + dotstyle); label("$D$", (997.3702410125919,1012.0181474270487), N * labelscalefactor); dot((1014.231628649713,1016.3318572782222),linewidth(3.pt) + dotstyle); label("$E$", (1014.3366833898151,1016.5066242464201), NE * labelscalefactor); label("$\omega$", (1002.3973350502878,1016.835779213174), NE * labelscalefactor); dot((1007.4744055866134,1019.1197712170533),linewidth(3.pt) + dotstyle); label("$L$", (1007.334659551596,1019.6784811987758), N * labelscalefactor); dot((1000.4588001954772,1009.0909726422188),linewidth(3.pt) + dotstyle); label("$F$", (1000.1231734618063,1008.1281341835936), S * labelscalefactor); dot((1011.2565736725893,1009.121050005663),linewidth(3.pt) + dotstyle); label("$G$", (1011.4341350466218,1008.3974427927559), E * labelscalefactor); dot((1003.6144104727823,1010.7499935216292),linewidth(3.pt) + dotstyle); label("$K$", (1003.2351840565703,1011.2700679571535), NE * labelscalefactor); dot((1007.5274341255129,1000.0825257520867),linewidth(3.pt) + dotstyle); label("$S$", (1007.4244290879835,999.1811037236467), E * labelscalefactor); dot((1005.8396671765139,1015.5751042733895),linewidth(3.pt) + dotstyle); label("$I$", (1005.9581933269889,1015.7585447765248), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Let $DF$ and $EG$ meet at $S.$ By the above observations, the sidelines of $\triangle SED$ are parallel to the sidelines of the intouch triangle of $\triangle ABC.$ Therefore, homothety carrying the incircle into $\omega$ carries the intouch triangle of $\triangle ABC$ into $\triangle SED.$ By homothety, we see that $S$ lies on major arc $\widehat{DE}$ of $\omega$, and the tangent to $\omega$ at $S$ is parallel to $BC.$ Therefore, $S$ and $L$ are antipodal points on $\omega.$ Applying the lemma to cyclic quadrilateral $DEGF$, we see that $I, K, L$ are collinear. $\square$
02.01.2018 14:36
mofumofu wrote: Circle $\omega$ is tangent to sides $AB$,$AC$ of triangle $ABC$ at $D$,$E$ respectively, such that $D\neq B$, $E\neq C$ and $BD+CE<BC$. $F$,$G$ lies on $BC$ such that $BF=BD$, $CG=CE$. Let $DG$ and $EF$ meet at $K$. $L$ lies on minor arc $DE$ of $\omega$, such that the tangent of $L$ to $\omega$ is parallel to $BC$. Prove that the incenter of $\triangle ABC$ lies on $KL$. Suppose $DE$ is at variable distance $\lambda$ from $A$. Define $F, G$ as the reflections of $D, E$ in lines $BI, CI$ respectively. Let $S=DF \cap EG$ and $T=DE \cap BC$. Let $A_1, A_2$ be the touch-points of the incircle and $A$-excircle with $BC$. Observe that $\angle DFB=\angle DEG=90^{\circ}-\tfrac{1}{2}\angle B$ hence $DEFG$ is cyclic. Also $I$ is the center of the circle $\odot(DEFG)$. Now by Brokard's Theorem, we know $IK \perp ST$. Note that $DLES$ is cyclic and is the image of the incircle under suitable homothety at $A$. Accordingly, we see $S \in AA_1, L \in AA_2$ and $T \in BC$ move with constant velocity. Hence we can find a spiral similarity with pivot $P$ such that $BC \mapsto AA_2$ and $T \mapsto S$. Let $Z$ be point at infinity with $ZP \perp ST$. Note that $L \mapsto Z$ is projective. Thus, in order to prove $I, K, L$ collinear, it is equivalent to show $L \mapsto Z$ is a perspectivity about $I$. Hence it is enough to verify the result for three values of $\lambda \in \mathbb{R}$. If $DE$ is an intouch chord then we're done. Suppose $B=D$ (likewise let $C=E$ for the final case). Then $K=B$ and $\angle LDE=\tfrac{1}{2}\angle C$ hence $L$ lies on $BI$ and we're done. $\blacksquare$
02.01.2018 16:38
Too easy for China TST P3. I will provide just a sketch since I am on mobile. By easy angle chasing, $DEFG$ is cyclic and the intersection $DF\cap EG$ lies on $\omega$. By Reim, $LP$ is diameter of $\omega$. Note that $I$ is the center of $\odot(DEFG)$. Now add Miquel point $M$ of $DEFG$ which lies on $IK$ and $\omega$. Note that $\angle LMP=90^{\circ}$ hence $I, K,L,M$ are colinear and we are done.
06.01.2018 16:28
It is also susceptible to straight barycentric coordinates. Substitute $a=BC=v+w$, $b=CA=w+u$, $c=AB=u+v$. Let $X=(0:w:v)$, $Y=(w:0:u)$, $Z=(v:u:0)$ be the contact points of the incircle on $\overline{BC}$. Then we may set \begin{align*} D &= (v-t:u+t:0) \\ E &= (w-t:0:u+t) \\ F &= (0:w+t:v-t) \\ G &= (0:w-t:v+t) \end{align*}where $t=XF=XG=EY=DZ$. We now solve for $K = (t:y:z)$, say. Since $K = \overline{DG} \cap \overline{EF}$ the standard determinants give \begin{align*} t(u+t)(v+t) &= (v-t)\left[ (v+t)y-(w-t)z \right] \\ t(u+t)(w+t) &= (w-t)\left[ -(v+t)y+(w+t)z \right]. \\ \implies t(u+t)\left[ (v+t)(w-t)+(w+t)(v+t) \right] &= \left[ -(w-t)^2(v-t)+(v+t)(w-t)(w+t) \right]z \\ z &= \frac{t(u+t)(v+t)(2w)} {(w-t)\left[ (v+t)(w+t)-(w-t)(v-t) \right]} \\ &= \frac{w(u+t)(v+t)}{(w-t)(v+w)}. \end{align*}Thus we recover \[ K = \left( \frac{t(v+t)}{u+t} : \frac{v(w+t)}{v-t} : \frac{w(v+t)}{w-t} \right). \]On the other hand, by homothety we have \begin{align*} \vec L &= \left( 1 + \frac tu \right) [2 \vec I - \vec X] - \frac tu \vec A \\ \left( 2u+2t \right) \vec I - u \vec L &= \left( u+t \right) \vec X + t \vec A \\ &= t \vec A + (u+t) \frac{w \vec B + v \vec C}{w+v} \\ \end{align*}Consequently the point $W = \frac{(2u+2t) \vec I - u \vec L}{u+2t} = \left( t(v+w) : w(u+t) : v(u+t) \right)$ lies on $\overline{IL}$ and is distinct from $I$ (since $u \neq 0$). Thus it is enough to show $W$, $K$, $I$ collinear: \begin{align*} \det \begin{bmatrix} \frac{t(v+w)}{u+t} & \frac{v(w+t)}{v-t} & \frac{w(v+t)}{w-t} \\ v+w & w+u & u+v \\ t(v+w) & w(u+t) & v(u+t) \end{bmatrix} &= \det \begin{bmatrix} 0 & \frac{v(w+t)}{v-t}-w & \frac{w(v+t)}{w-t}-v \\ v+w & w+u & u+v \\ t(v+w) & w(u+t) & v(u+t) \end{bmatrix} \\ &= \det \begin{bmatrix} 0 & \frac{v(w+t)}{v-t}-w & \frac{w(v+t)}{w-t}-v \\ v+w & w+u & u+v \\ 0& u(w-t) & u(v-t) \end{bmatrix} \\ &= -(v+w) \det \begin{bmatrix} \frac{t(v+w)}{v-t} & \frac{t(v+w)}{w-t} \\ u(w-t) & u(v-t) \end{bmatrix} = 0. \end{align*}
07.01.2018 15:57
My proof : From simple angle chasing one can easily get that $\angle ((EDGF), (EDK)) = \angle ((EDGF), \omega)$. So in other words $(EDK)$ is inversion image of $\omega$ wrt $(EDGF)$, so $I$ is the inner homothety center of $\pi, (EDK)$. Now note that the tangent to $(EDK)$ from $K$ is parallel to $BC$, so from a homothety we get that $K, L, I$ are collinear. Done
09.01.2018 23:43
Solution. Let $X=DF \cap EG$. Since $DEX$ and the intouch triangle of $ABC$ are homothetic, $X \in \omega$. Shooting lemma for $\omega$ and point $X$ implies $FGED$ is cyclic; its center is the intersection of the $\perp$ bisectors of $DF, EG$, i.e., $I$. Draw in the Miquel point of $FGED$, since it is the inverse of $K$ in $FGED$ and also the foot of $I$ the polar of $K$ wrt this circle, we get that the antipode of $X$ ($L$), $I$, $K$ are collinear. Done.
11.01.2018 17:26
Let $ Y, Z $ be the second intersection of $ \omega $ with $ EF, DG, $ respectively. Obviously, the incenter $ I $ of $ \triangle ABC $ is the circumcenter of $ DEFG, $ so simple angle chasing yields $ \measuredangle IFG = \measuredangle LYZ, $ $ \measuredangle IGF = \measuredangle LZY. $ On the other hand, by Reim's theorem we get $ FG \parallel YZ, $ so $ \triangle IFG $ and $ \triangle LYZ $ are homothetic $ \Longrightarrow I, L, K $ are collinear.
17.03.2018 16:28
You can solve this question easily if using Simson theorm and what you need to do is to find the obvious circle of DEFG and prove two right angles.Maybe a little not natural but quite simple.China`s D1 questions are often easy.Then the whole solving is your task and I just offer an idea
01.04.2018 23:22
(redacted)
03.06.2018 16:41
(redacted)
04.10.2018 10:57
It is easily to solve just by Pascal's theorem with circle DEFG. We could find that the incenter I of triangle ABC is the circumcenter of DEFG, and that make it natual to use Pascal's theorem.
23.10.2018 16:50
My solution: Let $I$ be the incenter of $\triangle ABC$. Also let $DF \cap EG=T,\odot (FGT) \cap \omega=P,DE \cap BC=X$. Note that, as $AD=AE,BD=BF,CE=CG$, we have that $I$ lies on the perpendicular bisectors of $DE,DF,CG$, which in turn gives $ID=IE=IF=IG$. This means that $D,E,F,G$ lie on a circle centered at $I$. Also, $\angle BDT=\angle BFD=\angle DET \Rightarrow T$ lies on $\omega$, as $BD$ is tangent to $\omega$. Now, $DE$ is antiparallel to $FG$ as well as to the tangent to $\omega$ at $T$, which means that the tangent to $\omega$ at $T$ is parallel to $BC$. This also gives that $L$ is the antipode of $T$ in $\omega$, and so $\measuredangle LPT=90^{\circ}$. But, $P$ is the Miquel Point of the degenerate cyclic quadrilateral $DEFG$, and so, by Brocard's Theorem, we get that $I$ is the orthocenter of $\triangle KTX$, and that $P$ lies on $TX$. Thus, $\measuredangle IPT=90^{\circ}=\measuredangle LPT \Rightarrow P,K,I,L$ are collinear. $\blacksquare$
21.05.2019 18:27
Different. Let $I$ be the incenter of $\triangle ABC$; $F_1$, $G_1$ are reflections of $F$, $G$ in $I$. Clearly, $I$ lies on perpendicular bisector of $DE$,$DF$,$EG$; so $DEFGF_1G_1$ is cyclic and center is $I$. Claim: $D$, $L$, $F_1$ and $E$, $L$, $G_1$ are collinear. Proof: I will prove that $\angle LDE= \angle F'DE$, which gives the first collinearity; second one follows similarly. $$\angle LDE= \angle AEL=\angle (HE,BC)=\frac{1}2 \angle C$$$$\angle F'DE=\angle F'FE=90-\angle FF'E=90-\angle EGC=\frac{1}2 \angle C$$This completes the proof of claim. $\square$ Now, by Pascal's Theorem on $FF'DGG'E$, we get $K,I,L$ are collinear. $\square$
22.05.2019 09:10
[asy][asy] size(5cm); defaultpen(fontsize(10pt)); pen pri=deepblue; pen sec=deepcyan; pen tri=deepgreen; pen fil=invisible; pen sfil=invisible; pen tfil=invisible; pair A,B,C,I,D,EE,F,G,K,X,L,M; A=dir(110); B=dir(210); C=dir(330); I=incenter(A,B,C); D=(A+4B)/5; EE=reflect(A,I)*D; F=reflect(B,I)*D; G=reflect(C,I)*EE; K=extension(D,G,EE,F); X=extension(D,F,EE,G); L=extension(K,I,X,X+(0,1)); M=foot(X,I,K); filldraw(circumcircle(D,F,G),tfil,tri); filldraw(circumcircle(D,EE,L),sfil,sec); filldraw(incircle(A,B,C),fil,pri); filldraw(D--X--EE--cycle,sfil,sec); draw(L--M--X,tri); draw(D--G,sec); draw(EE--F,sec); filldraw(A--B--C--cycle,fil,pri); dot("$A$",A,N); dot("$B$",B,SW); dot("$C$",C,SE); dot("$D$",D,W); dot("$I$",I,W); dot("$E$",EE,dir(30)); dot("$F$",F,SW); dot("$G$",G,SE); dot("$K$",K,dir(110)); dot("$X$",X,S); dot("$L$",L,N); dot("$M$",M,dir(240)); [/asy][/asy] Let $X=\overline{DF}\cap\overline{EG}$ and $M$ be the Miquel point of $DFGE$. Note that $\triangle XED$ and the contact triangle are homothetic at $A$, so $\overline{XL}$ is a diameter of $\omega$. Since $ID=IE$, $ID=IF$, $IE=IG$ by construction, $I$ is the circumcenter of cyclic quadrilateral $DFGE$, thus by properties of the Miquel point, $I$, $K$, $M$ lie on a line perpendicular to $\overline{XM}$. But $\angle XML=90^\circ$, so $L$, $I$, $K$, $M$ are collinear, as desired
29.12.2019 05:40
We proceed with barycentric coordinates. Let $AD=AE=r$. Then, the coordinates of $F,G$ are $(0,a-c+r,c-r)$ and $(0,b-r,a-b+r)$ respectively, and the coordinates of $D,E$ are $(c-r,r,0)$, $(b-r,0,r)$ respectively. Computing a determinant, the equations of $EF$ and $DG$ are $$(a-b+r)rx-(a-b+r)(c-r)y+(b-r)(c-r)z=0$$$$(a-c+r)x+(b-r)(c-r)y-(a-c+r)(b-r)z=0$$Solving, we get that point $K$ has coordinates $$((a^2+2ar-ab-ac)(b-r)(c-r),r(b-r)(a+c-b)(a-c+r),r(c-r)(a+b-c)(a-b+r))$$Also, if we consider point $X=(0,s-b,s-c)$, the $A$-extouch point, note that $L$ is a homothety of $X$ wrt $A$ with factor $\frac{r}{s}$. So, it has coordinates $((s-r)a,r(s-b),r(s-c))$. Now, if we put the coordinates of $I,K,L$ into a determinant, we get a cubic in $r$, since it is easily verified that the quartic coefficient equals $0$. Thus, we just need to verify that the determinant is $0$ at $4$ points. We will choose $0,b,c,s-a$. At $0$, we have $$\begin{vmatrix}a&b&c\\(a^2-ab-ac)bc&0&0\\as&0&0\end{vmatrix}=0$$At $r=b$ we have $$\begin{vmatrix}a&b&c\\0&0&ab(c-b)(a+b-c)\\a(s-b)&b(s-b)&b(s-c)\end{vmatrix}=ab(c-b)(a+b-c)(ab(s-b)-ab(s-b))=0$$and we get a similar result for $r=c$. Finally, at $r=s-a$, we have $$\begin{vmatrix}a&b&c\\0&2(s-a)(s-c)^2(s-b)&2(s-a)(s-b)(s-c)^2\\a^2&(s-a)(s-b)&(s-a)(s-c)\end{vmatrix}\propto\begin{vmatrix}a&b&c\\0&(s-c)&(s-b)\\a^2&(s-a)(s-b)&(s-a)(s-c)\end{vmatrix}$$$$=a(s-c)^2(s-a)-a(s-b)^2(s-a)+b(s-b)a^2-c(s-c)a^2=0$$as desired.
05.01.2020 16:29
Maybe similiar to the others but since i like this ill post my solution anyways. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(15cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -17.64875782250771, xmax = 12.985228170215747, ymin = -10.078567823113621, ymax = 10.151798251301829; /* image dimensions */ pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); /* draw figures */ draw((-5.43637095285195,6.498396949998834)--(-8.57057841452274,-2.9320625037227908), linewidth(0.4) + sexdts); draw((-5.43637095285195,6.498396949998834)--(6.96,-2.55), linewidth(0.4) + sexdts); draw((6.96,-2.55)--(-8.57057841452274,-2.9320625037227908), linewidth(0.4) + sexdts); draw(circle((-2.756624790103522,-1.8758367417264656), 5.184106943530284), linewidth(0.4) + dtsfsf); draw(circle((-3.596878261132844,0.7499638003166852), 3.55859333554701), linewidth(0.4) + dtsfsf); draw((-3.596878261132844,0.7499638003166852)--(-8.57057841452274,-2.9320625037227908), linewidth(0.4) + rvwvcq); draw((-3.596878261132844,0.7499638003166852)--(6.96,-2.55), linewidth(0.4) + rvwvcq); draw((-7.676150691333448,-0.24083530163939865)--(-1.283252160384008,-2.7527894567191105), linewidth(0.4)); draw((-5.735469886770201,-2.8623169582879795)--(0.2997740533078106,2.311452466335568), linewidth(0.4) + rvwvcq); draw((-3.684395533087758,4.307480807290673)--(-3.5093609891779307,-2.8075532066573032), linewidth(0.4)); draw((-7.676150691333448,-0.24083530163939865)--(-5.735469886770201,-2.8623169582879795), linewidth(0.4) + wvvxds); draw((0.2997740533078106,2.311452466335568)--(-1.283252160384008,-2.7527894567191105), linewidth(0.4) + rvwvcq); draw((-5.43637095285195,6.498396949998834)--(-2.8841186772775,3.306702222014393), linewidth(0.4) + wrwrwr); draw(circle((-3.5968782949371954,0.7499637752913503), 4.197873997018878), linewidth(0.4) + linetype("4 4") + rvwvcq); draw((-7.676150691333448,-0.24083530163939865)--(0.2997740533078106,2.311452466335568), linewidth(0.4)); draw((-2.6291309029295515,-7.0583757054673235)--(-16.712165924866934,-3.132350942791587), linewidth(0.4)); draw((-2.8841186772775,3.306702222014393)--(-5.546903657206548,-6.2449680793904125), linewidth(0.4)); draw((-5.735469886770201,-2.8623169582879795)--(-2.6291309029295515,-7.0583757054673235), linewidth(0.4) + wvvxds); draw((-1.283252160384008,-2.7527894567191105)--(-2.6291309029295515,-7.0583757054673235), linewidth(0.4) + wvvxds); draw((-5.43637095285195,6.498396949998834)--(-2.6291309029295515,-7.0583757054673235), linewidth(0.4)); draw((-2.8841186772775,3.306702222014393)--(-2.6291309029295515,-7.0583757054673235), linewidth(0.4)); draw((-16.712165924866934,-3.132350942791587)--(-7.676150691333448,-0.24083530163939865), linewidth(0.4)); draw((-16.712165924866934,-3.132350942791587)--(-8.57057841452274,-2.9320625037227908), linewidth(0.4)); /* dots and labels */ dot((-5.43637095285195,6.498396949998834),dotstyle); label("$A$", (-5.3553790280251805,6.690555678098006), NE * labelscalefactor); dot((-8.57057841452274,-2.9320625037227908),dotstyle); label("$B$", (-8.498346422083822,-2.738346504077927), NE * labelscalefactor); dot((6.96,-2.55),dotstyle); label("$C$", (7.037460759940218,-2.3603947288430267), NE * labelscalefactor); dot((-3.596878261132844,0.7499638003166852),linewidth(4pt) + dotstyle); label("$I$", (-3.5252967479404025,0.9019258573950597), NE * labelscalefactor); dot((-7.676150691333448,-0.24083530163939865),linewidth(4pt) + dotstyle); label("$D$", (-7.603197480738006,-0.07279187873705148), NE * labelscalefactor); dot((0.2997740533078106,2.311452466335568),linewidth(4pt) + dotstyle); label("$E$", (0.3735741965880374,2.4734095544243817), NE * labelscalefactor); dot((-3.5093609891779307,-2.8075532066573032),linewidth(4pt) + dotstyle); label("$T$", (-3.4258357544575344,-2.6388855105950584), NE * labelscalefactor); dot((-1.498834977839814,3.62429866411189),linewidth(4pt) + dotstyle); label("$M$", (-1.4167236861035932,3.786294668398246), NE * labelscalefactor); dot((-6.973851822223395,1.8722989086934119),linewidth(4pt) + dotstyle); label("$J$", (-6.887078327661354,2.0357811830997603), NE * labelscalefactor); dot((-5.735469886770201,-2.8623169582879795),linewidth(4pt) + dotstyle); label("$F$", (-5.653762008473786,-2.6985621066847796), NE * labelscalefactor); dot((-1.283252160384008,-2.7527894567191105),linewidth(4pt) + dotstyle); label("$G$", (-1.1979095004412827,-2.599101113201911), NE * labelscalefactor); dot((-3.684395533087758,4.307480807290673),linewidth(4pt) + dotstyle); label("$K$", (-3.604865542726697,4.462629424081752), NE * labelscalefactor); dot((-2.8841186772775,3.306702222014393),linewidth(4pt) + dotstyle); label("$L$", (-2.8091775948637503,3.468019489253067), NE * labelscalefactor); dot((-4.24854799053207,-1.5876392286151881),linewidth(4pt) + dotstyle); label("$K$", (-4.16184710623076,-1.425461390104063), NE * labelscalefactor); dot((-2.6291309029295515,-7.0583757054673235),linewidth(4pt) + dotstyle); label("$N$", (-2.5505790118082925,-6.8958160316618295), NE * labelscalefactor); dot((-16.712165924866934,-3.132350942791587),linewidth(4pt) + dotstyle); label("$O$", (-16.634255688982453,-2.9770528884368113), NE * labelscalefactor); dot((-5.546903657206548,-6.2449680793904125),linewidth(4pt) + dotstyle); label("$P$", (-5.474732220204623,-6.080235885102308), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Proof: Firstly we give a defination of few points. Let $DF \cap GE=N$ and $DE \cap FG=O$. Let $J,M,T$ be the touchpoints of the incircle with $AB,AC,BC$. Firstly notice that $\Delta DNE$ and $\Delta JTM$ are homothetic and so taking a homothety centred at $A$ s.t. $\odot(I) \mapsto \omega \implies N \in \omega$. Also $\{A,T,N\}$ is a collinear triplet $\implies L$ is the $N$-Antipode w.r.t $\omega$. Now let $P$ be the miquel point of quaderilaeral $DEGF$. Notice that $ID=IF=IG=IE \implies I$ is the centre of $\odot(DFGE)$. Now its well known that $K,P$ are inverses w.r.t $\odot(DEFG)\implies \{I,K,P\}$ is a collinear triplet. By brocard we have that $\angle IPN=90^\circ$. Now notice that since $L$ is the $N$-antipode $\implies \angle LPN=90^\circ \implies \{L,I,K,P\}$ is a collinear triplet as desired.$\blacksquare$.
22.02.2020 01:38
22.02.2020 03:38
Edit: Because the problem is a cyclic quad problem.
25.02.2020 15:42
@above the fact that u can reduce ll the incenter stuff to focus just on the quad. because we kmow so much about miquel theory, it makes sense to focus on a structure we already know a lot about
26.02.2020 04:49
Too easy for China TST P3. Anyways really Nice Problem. mofumofu wrote: Circle $\omega$ is tangent to sides $AB$,$AC$ of triangle $ABC$ at $D$,$E$ respectively, such that $D\neq B$, $E\neq C$ and $BD+CE<BC$. $F$,$G$ lies on $BC$ such that $BF=BD$, $CG=CE$. Let $DG$ and $EF$ meet at $K$. $L$ lies on minor arc $DE$ of $\omega$, such that the tangent of $L$ to $\omega$ is parallel to $BC$. Prove that the incenter of $\triangle ABC$ lies on $KL$. Note that after Simple Angle Chasing $DFGE$ we get that $DFGE$ is a cyclic quadrilateral. So, $\angle EGC=\angle GEC=\angle FDE$, now as $AC$ is tangent to $\omega$, hence it's obvious that $DF\cap EG=X\in\omega$. Now it's easy to notice that $L$ is the $K-\text{Antipode}$ WRT $\omega$. Let $LK\cap\omega=Y$, then it's well known that $Y$ is the Miquel Point of $DEGF$. So, the Circumcenter $(O)$ of $DEGF$ must lie on $LK$, and if $T$ is the Circumcenter of $\omega$ then $AT$ is the perpendicular bisector of $ED$. Hence, $ED\cap LY=O$. Hence, $OD=OF=OE=OG$. Hence, $BO,CO$ are the $B,C$ angle bisectors of $\triangle ABC$. So, $O\equiv I\in LK$. $\blacksquare$
19.03.2020 16:56
27.10.2020 22:47
Easy for a China #3 ? Interesting problem though.
22.11.2020 06:50
Here is a moving points approach. First, by easy angle chasing we get $DF, EG$ concur at a point $M$ on $\omega$, and points $D,E,F,G$ all lie on a circle centered at $I$. Let $DE,BC$ intersect at $T$, and let $TM$ intersect $\omega$ again at $N$. By Brokard's theorem, $KI$ passes through $N$, so it suffices to prove that $LI$ also passes through $N$. This can be deduced from the following claim: Claim. Let $X = \mu D + (1-\mu)E$, $Y = \mu F + (1-\mu) G$ for some real number $\mu$. Denote the line through $X$ perpendicular to $DE$ by $\ell_1$, and denote the line through $Y$ perpendicular to $FG$ by $\ell_2$. Suppose $\ell_1 \cap \ell_2 = Z$. Then then as $\mu$ varies, $Z$ moves on the line $NL$ linearly. In particular, taking $\mu = 0.5$, we have $N,I,L$ collinear. Proof. Let $\phi_1$ denote the linear map that sends $X$ to the point $Z_1 = \ell_1 \cap NL$, and let $\phi_2$ denote the linear map that sends $Y$ to the point $Z_2 = \ell_2 \cap NL$. It suffices to verify that $\phi_1, \phi_2$ coincide for two distinct values of $\mu$: Take $\mu = 1$, then $\ell_1,\ell_2$ intersect on $NL$ because $T,D,F,N$ are concyclic. Take $\mu = 0$, then $\ell_1,\ell_2$ intersect on $NL$ because $T,E,G,N$ are concyclic. $\square$
30.11.2020 19:58
Not the best solution, but... Bary wrt $\Delta ABC$. Let $AD=AE=t$ so that $\quad$-by lengths $D=(c-t:t:0)$, $E=(b-t:0:t)$, $F=(0:a-c+t:c-t)$, $G=(0:b-t:a-b+t)$. $\quad$-by a homothety from $A$ with factor $\frac{t}{s}$ sending the $A$-excircle touch point $(0:s-b:s-c)$ to $L$ we get $L=(a(s-t):t(s-b):t(s-c))$. Since $I=(a:b:c)$ it remains to compute $K$, the intersection of $$DG: t(a-b+t)x-(c-t)(a-b+t)y+(b-t)(c-t)z=0$$$$EF: t(a-c+t)x+(b-t)(c-t)y-(b-t)(a-c+t)z=0$$and solving we get $$K=(a(b-t)(c-t)(a+2t-b-c): t(a-c+t)(a-b+c)(b-t): t(a-b+t)(a+b-c)(c-t))$$Now to show the determinant $[IKL]=0$: -divide the first column by $a$. -multiply the first row by $t$, then divide the second and third columns by $t$ -add the first row to the second, then divide the second by $s$ -subtract $t$ times the second row from the first. Now we have $$\begin{pmatrix} 0 & b-t & c-t\\ 1 & 1 & 1\\ (b-t)(c-t)(a+2t-b-c) & (a-c+t)(a-b+c)(b-t) & (a-b+t)(a+b-c)(c-t) \end{pmatrix}$$ $$=(b-t)(c-t)(0)=0.$$where everything cancels (yay!)
10.03.2022 11:51
We have $\angle (DF, EG) = 180 - \angle DFB - \angle EGC = 90 - \frac{\angle BAC}{2} = \angle ADE$, which is the measure of arc $DE$, so we have $X = DF \cap EG \in \omega$. So, $\angle BFD = \angle BDX = \angle DEG$ so $DFEG$ is cyclic. Note that since $I$ lies on the perpendicular bisectors of $EG, DF$, it must in fact be the circumcenter (since the quadrilateral is cyclic). Let $M$ be the miquel point of $DFEG$, which lies on $\omega$. It's well known that $I,K,M$ must be collinear, so it suffices to show that $MI$ goes through $L$. Since $IK \perp XM$, we must have that $MI \cap \omega$ is the antipode of $X$, so it suffices to show that the tangent at $X$ to $\omega$ is parallel to $BC$. But this is true since if $Z$ is a point on the tangent, then $\angle FXZ = \angle DXZ = \angle DEG = \angle DFB$, so we are done. $\blacksquare$
22.04.2024 11:56
Let $I$ be incenter of $\triangle ABC$ Claim: $D,F,G,E$ lie on circle with center as $I$. $$\angle FDE = 180 - \angle EDA - \angle BDF = 90 - \frac{\angle C}{2} = \angle CGE$$hence $D,F,E,G$ cyclic.Note $I$ lie on perpendicular bisector of $DE$ and by condition $BD=BF$ and $CE=CG$ we have $I$ also lie on perpendicular bisector of $GF$ also from fact that $IB$ and $IC$ are angle bisector we have $I$ as center of $(DEF)$ Let $T=DF \cap GE$ Claim : $T$ lie on $(DLE)$ with $\angle TDL = \angle LET = 90$ Let perpendicular from $L$ to $BC$ meet at $H$.If $O$ is center of $(DLE)$ then $O,E,B,H$ cyclic. $$\angle LOD = \angle CBA \implies \angle ODL = 90 - \frac{\angle B}{2} \implies \angle EDL = \frac{\angle C}{2}$$hence $\angle FDL = \angle FDE + \angle EDL = 90$ Claim : $L,I,K$ are collinear. Let $M=(TGF)\cap (DTE)$. Then $M$ is miquel point point of $\Box DEGF$. hence $\overline{I-K-M}$ (well know property) as $LT$ is diameter $\angle TML = 90$, but it's well know that $\angle TMI = 90$ hence $\overline{L-I-M}$ Hence $L,I,K$ are collinear $\blacksquare$ [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(19.07651842087848cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.322575073781325, xmax = 22.753943347097152, ymin = -11.155828560285837, ymax = 3.1133695277123317; /* image dimensions */ pen ffxfqq = rgb(1.,0.4980392156862745,0.); draw((6.993497304868754,1.7930527604426043)--(4.74121400092014,-6.783937749194878)--(15.721214000920138,-6.883937749194877)--cycle, linewidth(0.4) + ffxfqq); /* draw figures */ draw((6.993497304868754,1.7930527604426043)--(4.74121400092014,-6.783937749194878), linewidth(0.4) + ffxfqq); draw((4.74121400092014,-6.783937749194878)--(15.721214000920138,-6.883937749194877), linewidth(0.4) + ffxfqq); draw((15.721214000920138,-6.883937749194877)--(6.993497304868754,1.7930527604426043), linewidth(0.4) + ffxfqq); draw(circle((10.260220799534883,-3.6489912612960405), 6.347229752037104), linewidth(0.4)); draw((xmin, -3.673826499279709*xmin + 27.485948481710658)--(xmax, -3.673826499279709*xmax + 27.485948481710658), linewidth(0.4)); /* line */ draw(circle((8.962592300056919,-5.441060612478726), 3.7418809170599285), linewidth(0.4) + red); draw((5.343414536894738,-4.490679049058201)--(9.911189132387893,-6.831023132905878), linewidth(0.4)); draw((7.11212409920384,-6.805530737339539)--(11.600778937775456,-2.7874509836861616), linewidth(0.4)); draw((xmin, -0.009107468123861607*xmin-1.6173979879750853)--(xmax, -0.009107468123861607*xmax-1.6173979879750853), linewidth(0.4)); /* line */ draw((xmin, 4.764129681840161*xmin-44.56063720954149)--(xmax, 4.764129681840161*xmax-44.56063720954149), linewidth(0.4) + green); /* line */ draw(circle((8.538392964454843,-3.8826258523669748), 3.2523246828354737), linewidth(0.4)); draw((xmin, 0.27219576106712146*xmin-5.945133835625384)--(xmax, 0.27219576106712146*xmax-5.945133835625384), linewidth(0.4)); /* line */ draw((5.343414536894738,-4.490679049058201)--(8.996669947959758,-1.6993348727470368), linewidth(0.4)); draw((8.996669947959758,-1.6993348727470368)--(11.600778937775456,-2.7874509836861616), linewidth(0.4)); draw((7.11212409920384,-6.805530737339539)--(8.996669947959758,-1.6993348727470368), linewidth(0.4)); draw((8.996669947959758,-1.6993348727470368)--(9.911189132387893,-6.831023132905878), linewidth(0.4)); draw((5.343414536894738,-4.490679049058201)--(8.928514652154083,-9.182786352210424), linewidth(0.4)); draw((11.600778937775456,-2.7874509836861616)--(8.928514652154083,-9.182786352210424), linewidth(0.4)); draw((8.996669947959758,-1.6993348727470368)--(8.928514652154083,-9.182786352210424), linewidth(0.4)); draw(circle((8.504315316552006,-7.624351592098668), 1.6151359007370965), linewidth(0.4)); draw((4.74121400092014,-6.783937749194878)--(-2.8283481155758152,-6.714998203507301), linewidth(0.4)); draw((-2.8283481155758152,-6.714998203507301)--(8.928514652154083,-9.182786352210424), linewidth(0.4)); /* dots and labels */ dot((6.993497304868754,1.7930527604426043),dotstyle); label("$A$", (7.05464745517935,1.9534013089775137), NE * labelscalefactor); dot((4.74121400092014,-6.783937749194878),dotstyle); label("$B$", (4.115001969344539,-6.643075490139423), NE * labelscalefactor); dot((15.721214000920138,-6.883937749194877),dotstyle); label("$C$", (15.603454327498964,-6.357055929355495), NE * labelscalefactor); dot((8.962592300056919,-5.441060612478726),dotstyle); label("$O$", (9.215684136657915,-5.4354373446072834), NE * labelscalefactor); dot((5.343414536894738,-4.490679049058201),linewidth(4.pt) + dotstyle); label("$D$", (4.9253907248990005,-4.243689174674252), NE * labelscalefactor); dot((11.600778937775456,-2.7874509836861616),linewidth(4.pt) + dotstyle); label("$E$", (11.901090012907012,-2.527571809970686), NE * labelscalefactor); dot((9.911189132387893,-6.831023132905878),linewidth(4.pt) + dotstyle); label("$G$", (9.962512989815947,-6.023366441774246), NE * labelscalefactor); dot((7.11212409920384,-6.805530737339539),linewidth(4.pt) + dotstyle); label("$F$", (6.879857723589172,-6.372945904954602), NE * labelscalefactor); dot((8.996669947959758,-1.6993348727470368),linewidth(4.pt) + dotstyle); label("$L$", (9.311023990252556,-1.4152735180331897), NE * labelscalefactor); dot((8.538392964454843,-3.882625852366973),linewidth(4.pt) + dotstyle); label("$I$", (8.738984868684701,-3.957669613890324), NE * labelscalefactor); dot((8.112914677045005,-5.9096595903947025),linewidth(4.pt) + dotstyle); label("$K$", (8.500635234698095,-5.880356661382282), NE * labelscalefactor); dot((8.928514652154083,-9.182786352210424),linewidth(4.pt) + dotstyle); label("$T$", (9.199794161058806,-9.598610951573342), NE * labelscalefactor); dot((10.202416004181245,-9.995957791125791),linewidth(4.pt) + dotstyle); label("$A'$", (10.264422526198981,-9.868740536758162), NE * labelscalefactor); dot((7.489289618033217,-8.880690244372106),linewidth(4.pt) + dotstyle); label("$M$", (7.213547211170421,-8.45453270843763), NE * labelscalefactor); dot((-2.8283481155758152,-6.714998203507301),linewidth(4.pt) + dotstyle); label("$R$", (-2.76535746506883,-6.595405563342101), NE * labelscalefactor); dot((8.950012986401948,-6.822269251794895),linewidth(4.pt) + dotstyle); label("$H$", (8.389405405504345,-6.54773563654478), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
26.09.2024 15:36
Finally done after and Let $DF\cap EG=J$ and $DE\cap FG=S$, we have $\odot(DEGF)$ with center $I$. Note that the $J$ is $L$-antipode this is because $\triangle DEJ$ and contact triangle are homothetic with center $A$, so $\overline{A-J-N}$. Now let the miquel point of $\odot(DEGF)$ be $M$ which is also $\odot(DJE)\cap \odot(FJG)$, then $\overline{I-K-M}$ and finally by Brokard's theorem we have $\angle IMJ=90^{\circ}$ because $J$ is the $L$-antipode we have $\angle LMJ=90^{\circ}$, so $\overline{L-I-K-M}$ and we are done!
22.12.2024 20:36
Here is an alternative solution using my favorite technique, the ``radical axis trick'': if you don't know how to prove three points are collinear, try to throw them on a radical axis. While there are certainly more natural solutions (see all above posts), this problem is still a nice showcase of the method. Claim: Points $D$, $E$, $F$, and $G$ lie on a circle with center $I$. Proof. From the given length conditions, we immediately deduce that $ID = IF$ and $IE = IG$. But we also have $ID = IE$ from the definition of $\omega$. $\blacksquare$ [asy][asy] size(300); defaultpen(fontsize(10pt)); pair A, B, C, D, E, F, G, I, O, K, L, X, Y, MA; real r = 0.47; A = dir(120); B = dir(210); C = dir(330); I = incenter(A, B, C); O = (1+r)*I - r*A; D = foot(O, A, B); E = foot(O, A, C); F = 2*foot(D, B, I) - D; G = 2*foot(E, C, I) - E; K = extension(D, G, E, F); L = O + abs(O-D)*dir(90); MA = dir(270); X = 2*foot(MA, D, L) - D; Y = 2*foot(MA, E, L) - E; draw(A--B--C--cycle, orange); draw(circumcircle(A, B, C), red); draw(CP(O, D), heavyred); draw(D--G^^E--F, lightblue); draw(circumcircle(B, D, I), lightblue+dashed); draw(circumcircle(C, E, I), lightblue+dashed); draw(D--L--Y, heavycyan); draw(circumcircle(D, F, G), dotted+heavygreen); draw(K--L, dotted+magenta); dot("$A$", A, dir(A)); dot("$B$", B, dir(180)); dot("$C$", C, dir(0)); dot("$D$", D, dir(130)); dot("$E$", E, dir(50)); dot("$I$", I, dir(120)); dot("$F$", F, dir(300)); dot("$G$", G, dir(315)); dot("$K$", K, dir(270)); dot("$L$", L, dir(90)); dot("$X$", X, dir(90)); dot("$Y$", Y, dir(60)); dot("$M_A$", MA, dir(270)); [/asy][/asy] Remark: If we are looking to apply the radical axis trick, we now know that $K$ automatically lies on the radical axis of any two circles $\omega_1$ and $\omega_2$ with $D, G\in \omega_1$ and $E, F\in \omega_2$. So there are two natural choices: $\omega_1 = (DGI)$ and $\omega_2 = (EFI)$, or $\omega_1 = (DGL)$ and $\omega_2 = (EFL)$. Trying both briefly should convince you that the first option is much easier. At this point, we make the following observations: Since $DI = IG$ and $\overline{BI}$ bisects $\angle DBG$, $B\in (DGI)$. Similarly, $C\in (EFI)$. (This is another of my favorite tricks.) Straightforward angle chasing yields $\overline{DL}\parallel \overline{BI}$ and $\overline{EL}\parallel \overline{CI}$. (For example, the homothety at $A$ sending $\omega$ to the $A$-excircle sends $L$, $D$, $E$ to the excircle tangency points.) To finish, let $X = \overline{DL}\cap (DGI)\neq D$ and $Y = \overline{EK}\cap (EFI)\neq E$. It suffices to show that $DXEY$ is cyclic; then $K$, $I$, $L$ will all lie on the radical axis of $(DGI)$ and $(EFI)$. We will show that $D$, $X$, $E$, $Y$ all lie on a circle with center $M_A$, the midpoint of arc $BC$. First note that $M_AD = M_AE$, by the definition of $\omega$. Furthermore, from the parallel lines, we see that $BDXI$ and $CYEI$ are isosceles trapezoids. Hence $DX$ and $BI$ share a perpendicular bisector, and so if $M_A$ is the midpoint of arc $BC$, we must have $M_AD = M_AX$. Similarly, we get $M_AE = M_AY$, which completes the proof.