2013 JBMO Shortlist

Algebra

1

$\boxed{A1}$ Find all ordered triplets of $(x,y,z)$ real numbers that satisfy the following system of equation $x^3=\frac{z}{y}-\frac {2y}{z}$ $y^3=\frac{x}{z}-\frac{2z}{x}$ $z^3=\frac{y}{x}-\frac{2x}{y}$

2

$\boxed{\text{A2}}$ Find the maximum value of $|\sqrt{x^2+4x+8}-\sqrt{x^2+8x+17}|$ where $x$ is a real number.

3

Show that \[\left(a+2b+\dfrac{2}{a+1}\right)\left(b+2a+\dfrac{2}{b+1}\right)\geq 16\] for all positive real numbers $a$ and $b$ such that $ab\geq 1$.

Combinatorics

1

Find the maximum number of different integers that can be selected from the set $ \{1,2,...,2013\}$ so that no two exist that their difference equals to $17$.

2

In a billiard with shape of a rectangle $ABCD$ with $AB=2013$ and $AD=1000$, a ball is launched along the line of the bisector of $\angle BAD$. Supposing that the ball is reflected on the sides with the same angle at the impact point as the angle shot , examine if it shall ever reach at vertex B.

3

Let $n$ be a positive integer. Two players, Alice and Bob, are playing the following game: - Alice chooses $n$ real numbers; not necessarily distinct. - Alice writes all pairwise sums on a sheet of paper and gives it to Bob. (There are $\frac{n(n-1)}{2}$ such sums; not necessarily distinct.) - Bob wins if he finds correctly the initial $n$ numbers chosen by Alice with only one guess. Can Bob be sure to win for the following cases? a. $n=5$ b. $n=6$ c. $n=8$ Justify your answer(s). [For example, when $n=4$, Alice may choose the numbers 1, 5, 7, 9, which have the same pairwise sums as the numbers 2, 4, 6, 10, and hence Bob cannot be sure to win.]

Geometry

1

Let ${AB}$ be a diameter of a circle ${\omega}$ and center ${O}$ , ${OC}$ a radius of ${\omega}$ perpendicular to $AB$,${M}$ be a point of the segment $\left( OC \right)$ . Let ${N}$ be the second intersection point of line ${AM}$ with ${\omega}$ and ${P}$ the intersection point of the tangents of ${\omega}$ at points ${N}$ and ${B.}$ Prove that points ${M,O,P,N}$ are cocyclic. (Albania)

2

Circles ${\omega_1}$ , ${\omega_2}$ are externally tangent at point M and tangent internally with circle ${\omega_3}$ at points ${K}$ and $L$ respectively. Let ${A}$ and ${B}$ be the points that their common tangent at point ${M}$ of circles ${\omega_1}$ and ${\omega_2}$ intersect with circle ${\omega_3.}$ Prove that if ${\angle KAB=\angle LAB}$ then the segment ${AB}$ is diameter of circle ${\omega_3.}$ Theoklitos Paragyiou (Cyprus)

3

Let $ABC$ be an acute-angled triangle with $AB<AC$ and let $O$ be the centre of its circumcircle $\omega$. Let $D$ be a point on the line segment $BC$ such that $\angle BAD = \angle CAO$. Let $E$ be the second point of intersection of $\omega$ and the line $AD$. If $M$, $N$ and $P$ are the midpoints of the line segments $BE$, $OD$ and $AC$, respectively, show that the points $M$, $N$ and $P$ are collinear.

4

Let $I$ be the incenter and $AB$ the shortest side of the triangle $ABC$. The circle centered at $I$ passing through $C$ intersects the ray $AB$ in $P$ and the ray $BA$ in $Q$. Let $D$ be the point of tangency of the $A$-excircle of the triangle $ABC$ with the side $BC$. Let $E$ be the reflection of $C$ with respect to the point $D$. Prove that $PE\perp CQ$.

5

A circle passing through the midpoint $M$ of the side $BC$ and the vertex $A$ of the triangle $ABC$ intersects the segments $AB$ and $AC$ for the second time in the points $P$ and $Q$, respectively. Prove that if $\angle BAC=60^{\circ}$, then $AP+AQ+PQ<AB+AC+\frac{1}{2} BC$.

6

Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.

Number Theory

1

$\boxed{N1}$ find all positive integers $n$ for which $1^3+2^3+\cdots+{16}^3+{17}^n$ is a perfect square.

2

Solve in integers $20^x+13^y=2013^z$.

3

Find all ordered pairs $(a,b)$ of positive integers for which the numbers $\dfrac{a^3b-1}{a+1}$ and $\dfrac{b^3a+1}{b-1}$ are both positive integers.

4

A rectangle in xy Cartesian System is called latticed if all it's vertices have integer coordinates. a) Find a latticed rectangle of area $2013$, whose sides are not parallel to the axes. b) Show that if a latticed rectangle has area $2011$, then their sides are parallel to the axes.

5

Solve in positive integers: $\frac{1}{x^2}+\frac{y}{xz}+\frac{1}{z^2}=\frac{1}{2013}$ .

6

Solve in integers the system of equations: $$x^2-y^2=z$$$$3xy+(x-y)z=z^2$$