2012 Cono Sur Olympiad

1

1. Around a circumference are written $2012$ number, each of with is equal to $1$ or $-1$. If there are not $10$ consecutive numbers that sum $0$, find all possible values of the sum of the $2012$ numbers.

2

2. In a square $ABCD$, let $P$ be a point in the side $CD$, different from $C$ and $D$. In the triangle $ABP$, the altitudes $AQ$ and $BR$ are drawn, and let $S$ be the intersection point of lines $CQ$ and $DR$. Show that $\angle ASB=90$.

3

3. Show that there do not exist positive integers $a$, $b$, $c$ and $d$, pairwise co-prime, such that $ab+cd$, $ac+bd$ and $ad+bc$ are odd divisors of the number $(a+b-c-d)(a-b+c-d)(a-b-c+d)$.

4

4. Find the biggest positive integer $n$, lesser thar $2012$, that has the following property: If $p$ is a prime divisor of $n$, then $p^2 - 1$ is a divisor of $n$.

5

5. $A$ and $B$ play alternating turns on a $2012 \times 2013$ board with enough pieces of the following types: Type $1$: Piece like Type $2$ but with one square at the right of the bottom square. Type $2$: Piece of $2$ consecutive squares, one over another. Type $3$: Piece of $1$ square. At his turn, $A$ must put a piece of the type $1$ on available squares of the board. $B$, at his turn, must put exactly one piece of each type on available squares of the board. The player that cannot do more movements loses. If $A$ starts playing, decide who has a winning strategy. Note: The pieces can be rotated but cannot overlap; they cannot be out of the board. The pieces of the types $1$, $2$ and $3$ can be put on exactly $3$, $2$ and $1$ squares of the board respectively.

6

6. Consider a triangle $ABC$ with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let $M$ and $N$, respectively, be variable points of the sides $AB$ and $AC$, different from $A$, such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle $AMN$ pass through a fixed point different from $A$.