Let $A=\{1,2,\ldots,2012\}, \: B=\{1,2,\ldots,19\}$ and $S$ be the set of all subsets of $A.$ Find the number of functions $f : S\to B$ satisfying $f(A_1\cap A_2)=\min\{f(A_1),f(A_2)\}$ for all $A_1, A_2 \in S.$
2012 Turkey Team Selection Test
Day 1
In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.
For all positive real numbers $a, b, c$ satisfying $ab+bc+ca \leq 1,$ prove that \[ a+b+c+\sqrt{3} \geq 8abc \left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right) \]
Day 2
In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$
A positive integer $n$ is called good if for all positive integers $a$ which can be written as $a=n^2 \sum_{i=1}^n {x_i}^2$ where $x_1, x_2, \ldots ,x_n$ are integers, it is possible to express $a$ as $a=\sum_{i=1}^n {y_i}^2$ where $y_1, y_2, \ldots, y_n$ are integers with none of them is divisible by $n.$ Find all good numbers.
Two players $A$ and $B$ play a game on a $1\times m$ board, using $2012$ pieces numbered from $1$ to $2012.$ At each turn, $A$ chooses a piece and $B$ places it to an empty place. After $k$ turns, if all pieces are placed on the board increasingly, then $B$ wins, otherwise $A$ wins. For which values of $(m,k)$ pairs can $B$ guarantee to win?
Day 3
Let $S_r(n)=1^r+2^r+\cdots+n^r$ where $n$ is a positive integer and $r$ is a rational number. If $S_a(n)=(S_b(n))^c$ for all positive integers $n$ where $a, b$ are positive rationals and $c$ is positive integer then we call $(a,b,c)$ as nice triple. Find all nice triples.
In a plane, the six different points $A, B, C, A', B', C'$ are given such that triangles $ABC$ and $A'B'C'$ are congruent, i.e. $AB=A'B', BC=B'C', CA=C'A'.$ Let $G$ be the centroid of $ABC$ and $A_1$ be an intersection point of the circle with diameter $AA'$ and the circle with center $A'$ and passing through $G.$ Define $B_1$ and $C_1$ similarly. Prove that \[ AA_1^2+BB_1^2+CC_1^2 \leq AB^2+BC^2+CA^2 \]
Let $\mathbb{Z^+}$ and $\mathbb{P}$ denote the set of positive integers and the set of prime numbers, respectively. A set $A$ is called $S-\text{proper}$ where $A, S \subset \mathbb{Z^+}$ if there exists a positive integer $N$ such that for all $a \in A$ and for all $0 \leq b <a$ there exist $s_1, s_2, \ldots, s_n \in S$ satisfying $ b \equiv s_1+s_2+\cdots+s_n \pmod a$ and $1 \leq n \leq N.$ Find a subset $S$ of $\mathbb{Z^+}$ for which $\mathbb{P}$ is $S-\text{proper}$ but $\mathbb{Z^+}$ is not.