Problem

Source: Turkish TST 2012 Problem 4

Tags: geometry, circumcircle, trigonometry, geometric transformation, angle bisector, trig identities, Law of Sines



In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$