Real numbers $a,b,c,d$ are given. Solve the system of equations (unknowns $x,y,z,u)$\[ x^{2}-yz-zu-yu=a\] \[ y^{2}-zu-ux-xz=b\] \[ z^{2}-ux-xy-yu=c\] \[ u^{2}-xy-yz-zx=d\]
2010 Mediterranean Mathematics Olympiad
Given the positive real numbers $a_{1},a_{2},\dots,a_{n},$ such that $n>2$ and $a_{1}+a_{2}+\dots+a_{n}=1,$ prove that the inequality \[ \frac{a_{2}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{1}+n-2}+\frac{a_{1}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{2}+n-2}+\dots+\frac{a_{1}\cdot a_{2}\cdot\dots\cdot a_{n-1}}{a_{n}+n-2}\leq\frac{1}{\left(n-1\right)^{2}}\] does holds.
Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$
Let $p$ be a positive integer, $p>1.$ Find the number of $m\times n$ matrices with entries in the set $\left\{ 1,2,\dots,p\right\} $ and such that the sum of elements on each row and each column is not divisible by $p.$