2012 China National Olympiad

Day 1

1

In the triangle $ABC$, $\angle A$ is biggest. On the circumcircle of $\triangle ABC$, let $D$ be the midpoint of $\widehat{ABC}$ and $E$ be the midpoint of $\widehat{ACB}$. The circle $c_1$ passes through $A,B$ and is tangent to $AC$ at $A$, the circle $c_2$ passes through $A,E$ and is tangent $AD$ at $A$. $c_1$ and $c_2$ intersect at $A$ and $P$. Prove that $AP$ bisects $\angle BAC$. Diagram[asy][asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(14.4cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -5.23, xmax = 9.18, ymin = -2.97, ymax = 4.82; /* image dimensions */ /* draw figures */ draw(circle((-1.32,1.36), 2.98)); draw(circle((3.56,1.53), 3.18)); draw((0.92,3.31)--(-2.72,-1.27)); draw(circle((0.08,0.25), 3.18)); draw((-2.72,-1.27)--(3.13,-0.65)); draw((3.13,-0.65)--(0.92,3.31)); draw((0.92,3.31)--(2.71,-1.54)); draw((-2.41,-1.74)--(0.92,3.31)); draw((0.92,3.31)--(1.05,-0.43)); /* dots and labels */ dot((-1.32,1.36),dotstyle); dot((0.92,3.31),dotstyle); label("$A$", (0.81,3.72), NE * labelscalefactor); label("$c_1$", (-2.81,3.53), NE * labelscalefactor); dot((3.56,1.53),dotstyle); label("$c_2$", (3.43,3.98), NE * labelscalefactor); dot((1.05,-0.43),dotstyle); label("$P$", (0.5,-0.43), NE * labelscalefactor); dot((-2.72,-1.27),dotstyle); label("$B$", (-3.02,-1.57), NE * labelscalefactor); dot((2.71,-1.54),dotstyle); label("$E$", (2.71,-1.86), NE * labelscalefactor); dot((3.13,-0.65),dotstyle); label("$C$", (3.39,-0.9), NE * labelscalefactor); dot((-2.41,-1.74),dotstyle); label("$D$", (-2.78,-2.07), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy]

2

Let $p$ be a prime. We arrange the numbers in ${\{1,2,\ldots ,p^2} \}$ as a $p \times p$ matrix $A = ( a_{ij} )$. Next we can select any row or column and add $1$ to every number in it, or subtract $1$ from every number in it. We call the arrangement good if we can change every number of the matrix to $0$ in a finite number of such moves. How many good arrangements are there?

3

Prove for any $M>2$, there exists an increasing sequence of positive integers $a_1<a_2<\ldots $ satisfying: 1) $a_i>M^i$ for any $i$; 2) There exists a positive integer $m$ and $b_1,b_2,\ldots ,b_m\in\left\{ -1,1\right\}$, satisfying $n=a_1b_1+a_2b_2+\ldots +a_mb_m$ if and only if $n\in\mathbb{Z}/ \{0\}$.

Day 2

1

Let $f(x)=(x + a)(x + b)$ where $a,b>0$. For any reals $x_1,x_2,\ldots ,x_n\geqslant 0$ satisfying $x_1+x_2+\ldots +x_n =1$, find the maximum of $F=\sum\limits_{1 \leqslant i < j \leqslant n} {\min \left\{ {f({x_i}),f({x_j})} \right\}} $.

2

Consider a square-free even integer $n$ and a prime $p$, such that 1) $(n,p)=1$; 2) $p\le 2\sqrt{n}$; 3) There exists an integer $k$ such that $p|n+k^2$. Prove that there exists pairwise distinct positive integers $a,b,c$ such that $n=ab+bc+ca$. Proposed by Hongbing Yu

3

Find the smallest positive integer $k$ such that, for any subset $A$ of $S=\{1,2,\ldots,2012\}$ with $|A|=k$, there exist three elements $x,y,z$ in $A$ such that $x=a+b$, $y=b+c$, $z=c+a$, where $a,b,c$ are in $S$ and are distinct integers. Proposed by Huawei Zhu