Prove for any $M>2$, there exists an increasing sequence of positive integers $a_1<a_2<\ldots $ satisfying: 1) $a_i>M^i$ for any $i$; 2) There exists a positive integer $m$ and $b_1,b_2,\ldots ,b_m\in\left\{ -1,1\right\}$, satisfying $n=a_1b_1+a_2b_2+\ldots +a_mb_m$ if and only if $n\in\mathbb{Z}/ \{0\}$.
Problem
Source: 2012 China Mathematical Olympaid P3
Tags: ceiling function, algebra proposed, algebra
14.01.2012 00:59
I am confused. Which version of the question is it? The one here, or this one?
14.01.2012 04:22
If you read carefully, they are the exact same question, just this one is in slightly better English
14.01.2012 06:59
I knew that. Just trying to get one of them locked up forever! But this one seems to have a problem with its quantifiers. Should it be: Prove for any $M>2$, there exists an increasing sequence of positive integers $a_1<a_2<\ldots $ satisfying: 1) $a_i>M^i$ for any $i$; 2) Given $n\in\mathbb{Z}/\{0\}$, there exists a positive integer $m$ and $b_1,b_2,\ldots ,b_m\in\left\{ -1,1\right\}$, satisfying $n=a_1b_1+a_2b_2+\ldots +a_mb_m$, and there is no such $b_k$ for any $m$ if $n=0$. Because the way it's written now it implies there's an $m$ that works for all $n\neq0$.
14.01.2012 11:55
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=38&t=457772&p=2572193#p2572193
15.01.2012 03:37
Let ${{a}_{1}}={{M}^{2}},{{a}_{2}}={{M}^{2}}+1$, then $1=-{{a}_{1}}+{{a}_{2}}$. For any integer $r\ge 2$, ${{a}_{2r-1}}={{M}^{2r}}+\sum\limits_{i=1}^{2r-2}{{{a}_{i}}}$, and ${{a}_{2r}}=r+\sum\limits_{i=1}^{2r-1}{{{a}_{i}}}$. For any $r\ge 1$, ${{a}_{2r-1}}\ge {{M}^{2r}}>{{M}^{2r-1}}$, and ${{a}_{2r}}>{{a}_{2r-1}}\ge {{M}^{2r}}$. $\pm {{a}_{1}}\ne 0$, for any $m\ge 2$, ${{b}_{1}},{{b}_{2}},...,{{b}_{m}}\in \left\{ -1,1 \right\}$, $\left| {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+...+{{a}_{m}}{{b}_{m}} \right|\ge \left| {{a}_{m}} \right|-\left| {{a}_{1}} \right|-\left| {{a}_{2}} \right|-...\left| {{a}_{m-1}} \right|={{a}_{m}}-\sum\limits_{i=1}^{m-1}{{{a}_{i}}}>0$; for any $n\ge 1$, $\pm n=\pm \left( {{a}_{2n}}-\sum\limits_{i=1}^{2n-1}{{{a}_{i}}} \right)$. So we have done.
18.01.2012 17:26
yunxiu wrote: Let ${{a}_{1}}={{M}^{2}},{{a}_{2}}={{M}^{2}}+1$, then $1=-{{a}_{1}}+{{a}_{2}}$. For any integer $r\ge 2$, ${{a}_{2r-1}}={{M}^{2r}}+\sum\limits_{i=1}^{2r-2}{{{a}_{i}}}$, and ${{a}_{2r}}=r+\sum\limits_{i=1}^{2r-1}{{{a}_{i}}}$. For any $r\ge 1$, ${{a}_{2r-1}}\ge {{M}^{2r}}>{{M}^{2r-1}}$, and ${{a}_{2r}}>{{a}_{2r-1}}\ge {{M}^{2r}}$. $\pm {{a}_{1}}\ne 0$, for any $m\ge 2$, ${{b}_{1}},{{b}_{2}},...,{{b}_{m}}\in \left\{ -1,1 \right\}$, $\left| {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+...+{{a}_{m}}{{b}_{m}} \right|\ge \left| {{a}_{m}} \right|-\left| {{a}_{1}} \right|-\left| {{a}_{2}} \right|-...\left| {{a}_{m-1}} \right|={{a}_{m}}-\sum\limits_{i=1}^{m-1}{{{a}_{i}}}>0$; for any $n\ge 1$, $\pm n=\pm \left( {{a}_{2n}}-\sum\limits_{i=1}^{2n-1}{{{a}_{i}}} \right)$. So we have done. why $\displaystyle a_{2r-1}\in \mathbb{N}$ ? (we don't know that $\displaystyle M\in \mathbb{N}$)
18.01.2012 18:51
sorry for my ridicule comment,but for a complete solution you need to use $\left \lceil M \right \rceil$ instead $M$.
14.03.2012 14:24
For another solution : $a_{2n-1}=M^{2n}$ , $a_{2n}=M^{2n}+2^{n-1}$
29.05.2016 16:41
Mosquitall wrote: For another solution : $a_{2n-1}=M^{2n}$ , $a_{2n}=M^{2n}+2^{n-1}$ sorry I don't think this is right,can you explain it more detail
12.03.2019 00:42
Note that $-a$ is obtained from $a$ by changing the signs in the expression $a=a_1b_1+a_2b_2+\ldots +a_kb_k$, so it suffices to prove the problem statement for positive integers. We construct the sequence $(a_n)$ by induction. Let $a_1>M^2$, $a_2=a_1+1$. Suppose we constructed the first $k$ terms. Call an integer attainable if it can be be obtained by the sum $a_1b_1+a_2b_2+\ldots +a_lb_l$, $b_1,b_2,\ldots ,b_l\in\left\{ -1,1\right\}$, $l\le k$, and unattainable in opposite case. Let $m\in\mathbb N$ be the smallest unattainable positive integer. Lemma. There exists an attainable number $a\in\mathbb N$ such that $m+a$ is unattainable. Proof: Suppose not. From the definition of $m$ we get that the numbers $1,2,\ldots, m-1$ are attainable. Then, by our assumption it follows that $m+1,m+2,\ldots, m+(m-1)$ are also attainable. Proceeding by induction, we get that all the numbers not divisible by $m$ are attainable, which is a contradiction since all the numbers greater than $a_1+a_2+\ldots +a_n$ are unattainable.$\blacksquare$ According to Lemma, we can pick an attainable positive integer $a$ such that $m+a$ is unattainable. Then, let $$ a_{k+1}>\max\left\{\sum\limits_{i=1}^k{a_i}, M^{k+2}\right\},\mbox{ } a_{k+2}=a_{k+1}+m+a. $$Then the number $m$ is attainable by the new sequence since $m=-a-a_{k+1}+a_{k+2}$, and $-a$ is attainable ($-a$ is obtained from $a$ by changing the signs in the expression $a=a_1b_1+a_2b_2+\ldots +a_kb_k$). Suppose then that $0$ became attainable after adding $a_{k+1}$ and $a_{k+2}$ into the sequence, i.e. $$ 0=a_1b_1+a_2b_2+\ldots +a_{k+2}b_{k+2},\qquad\mbox{ }b_1,b_2,\ldots ,b_k\in\left\{ -1,1\right\}, $$or $$ a_1c_1+a_2c_2+\ldots +a_{k}c_{k}=a_{k+1}c_{k+1}+a_{k+2}c_{k+2},\qquad\mbox{ }c_1,c_2,\ldots ,c_k\in\left\{ -1,1\right\} $$If $c_{k+1}=c_{k+2}\ne0$ or $c_{k+1}\ne0$, $c_{k+2}\ne0$, then $|a_{k+1}c_{k+1}+a_{k+2}c_{k+2}| > a_1+a_2+\ldots+a_k\ge |a_1c_1+a_2c_2+\ldots +a_{k}c_{k}|$, a contradiction. Then $c_{k+1}=-c_{k+2}\ne0$, and $|a_{k+1}c_{k+1}+a_{k+2}c_{k+2}|=m+a=|a_1c_1+a_2c_2+\ldots +a_{k}c_{k}|$, which is a contradiction since $m+a$ is unattainable. If $c_{k+1}=c_{k+2}=0$, then again contradiction since $0\ne a_1c_1+a_2c_2+\ldots +a_{k}c_{k}$. This shows that our induction step is correct, and hence the sequence $(a_n)_{n\in\mathbb N}$ will satisfy the problem statement.
30.11.2020 21:26
If it is, in my opinion this is too easy for a CMO3, which is quite surprising given the difficulty of day 2...
21.09.2021 11:50
Pick $a_1=M+1$. Suppose we have define $a_1,...,a_m$, Let $$T_m=\{n:n=b_1a_1+...+b_ma_m:b_1,...,b_m\in\{-1,1\}\}$$Let $$S_m=T_1\cup...\cup T_m$$Let $k$ be the integer with the smallest absolute value that is not in $S_m$. Pick $a_{m+1}$ to be sufficiently large, let $\lceil M\rceil +1=k$ and let $r$ be an integer such that $k^r>M^{r-1}$, then define $$a_{m+i}=(\lceil M\rceil+1)a_{m+i-1}$$for each $2\leq i\leq r+1$. Now we define $$a_{m+r+1}=a_1+...+a_{m+r}+|k|$$By construction we see that $$-(a_1+...+a_{m+r}+a_{m+r+1}=|k|$$$$a_{m+r+1}>M^{m+r+1}$$and $$0\notin S_{m+r+1}$$as desired.