Let $a$ be real number with $\sqrt{2}<a<2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre $O$ lies in its interior. The quadrilateral's circumcircle $\omega$ has radius $1$, and the longest and shortest sides of the quadrilateral have length $a$ and $\sqrt{4-a^2}$, respectively. Lines $L_A,L_B,L_C,L_D$ are tangent to $\omega$ at $A,B,C,D$, respectively. Let lines $L_A$ and $L_B$, $L_B$ and $L_C$,$L_C$ and $L_D$,$L_D$ and $L_A$ intersect at $A',B',C',D'$ respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.
2001 China National Olympiad
Day 1
Let $X=\{1,2,\ldots,2001\}$. Find the least positive integer $m$ such that for each subset $W\subset X$ with $m$ elements, there exist $u,v\in W$ (not necessarily distinct) such that $u+v$ is of the form $2^{k}$, where $k$ is a positive integer.
Let $P$ be a regular $n$-gon $A_1A_2\ldots A_n$. Find all positive integers $n$ such that for each permutation $\sigma (1),\sigma (2),\ldots ,\sigma (n)$ there exists $1\le i,j,k\le n$ such that the triangles $A_{i}A_{j}A_{k}$ and $A_{\sigma (i)}A_{\sigma (j)}A_{\sigma (k)}$ are both acute, both right or both obtuse.
Day 2
Let $a,b,c$ be positive integers such that $a,b,c,a+b-c,a+c-b,b+c-a,a+b+c$ are $7$ distinct primes. The sum of two of $a,b,c$ is $800$. If $d$ be the difference of the largest prime and the least prime among those $7$ primes, find the maximum value of $d$.
Let $P_1P_2\ldots P_{24}$ be a regular $24$-sided polygon inscribed in a circle $\omega$ with circumference $24$. Determine the number of ways to choose sets of eight distinct vertices from these $24$ such that none of the arcs has length $3$ or $8$.
Let $a=2001$. Consider the set $A$ of all pairs of integers $(m,n)$ with $n\neq0$ such that (i) $m<2a$; (ii) $2n|(2am-m^2+n^2)$; (iii) $n^2-m^2+2mn\leq2a(n-m)$. For $(m, n)\in A$, let \[f(m,n)=\frac{2am-m^2-mn}{n}.\] Determine the maximum and minimum values of $f$.