Let $a_0$ be a positive integer. Define the sequence $\{a_n\}_{n \geq 0}$ as follows: if \[ a_n = \sum_{i = 0}^jc_i10^i \] where $c_i \in \{0,1,2,\cdots,9\}$, then \[ a_{n + 1} = c_0^{2005} + c_1^{2005} + \cdots + c_j^{2005}. \] Is it possible to choose $a_0$ such that all terms in the sequence are distinct?
2005 Baltic Way
Let $\alpha$, $\beta$ and $\gamma$ be three acute angles such that $\sin \alpha+\sin \beta+\sin \gamma = 1$. Show that \[\tan^{2}\alpha+\tan^{2}\beta+\tan^{2}\gamma \geq \frac{3}{8}. \]
Consider the sequence $\{a_k\}_{k \geq 1}$ defined by $a_1 = 1$, $a_2 = \frac{1}{2}$ and \[ a_{k + 2} = a_k + \frac{1}{2}a_{k + 1} + \frac{1}{4a_ka_{k + 1}}\ \textrm{for}\ k \geq 1. \] Prove that \[ \frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \frac{1}{a_3a_5} + \cdots + \frac{1}{a_{98}a_{100}} < 4. \]
Find three different polynomials $P(x)$ with real coefficients such that $P\left(x^2 + 1\right) = P(x)^2 + 1$ for all real $x$.
Let $a$, $b$, $c$ be positive real numbers such that $abc=1$. Prove that \[\frac a{a^{2}+2}+\frac b{b^{2}+2}+\frac c{c^{2}+2}\leq 1 \]
Let $N$ and $K$ be positive integers satisfying $1 \leq K \leq N$. A deck of $N$ different playing cards is shuffled by repeating the operation of reversing the order of $K$ topmost cards and moving these to the bottom of the deck. Prove that the deck will be back in its initial order after a number of operations not greater than $(2N/K)^2$.
A rectangular array has $ n$ rows and $ 6$ columns, where $ n \geq 2$. In each cell there is written either $ 0$ or $ 1$. All rows in the array are different from each other. For each two rows $ (x_{1},x_{2},x_{3},x_{4},x_{5},x_{6})$ and $ (y_{1},y_{2},y_{3},y_{4},y_{5},y_{6})$, the row $ (x_{1}y_{1},x_{2}y_{2},x_{3}y_{3},x_{4}y_{4},x_{5}y_{5},x_{6}y_{6})$ can be found in the array as well. Prove that there is a column in which at least half of the entries are zeros.
Consider a $25 \times 25$ grid of unit squares. Draw with a red pen contours of squares of any size on the grid. What is the minimal number of squares we must draw in order to colour all the lines of the grid?
A rectangle is divided into $200\times 3$ unit squares. Prove that the number of ways of splitting this rectangle into rectangles of size $1\times 2$ is divisible by $3$.
Let $m = 30030$ and let $M$ be the set of its positive divisors which have exactly $2$ prime factors. Determine the smallest positive integer $n$ with the following property: for any choice of $n$ numbers from $M$, there exist 3 numbers $a$, $b$, $c$ among them satisfying $abc=m$.
Let the points $D$ and $E$ lie on the sides $BC$ and $AC$, respectively, of the triangle $ABC$, satisfying $BD=AE$. The line joining the circumcentres of the triangles $ADC$ and $BEC$ meets the lines $AC$ and $BC$ at $K$ and $L$, respectively. Prove that $KC=LC$.
Let $ABCD$ be a convex quadrilateral such that $BC=AD$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. The lines $AD$ and $BC$ meet the line $MN$ at $P$ and $Q$, respectively. Prove that $CQ=DP$.
What the smallest number of circles of radius $\sqrt{2}$ that are needed to cover a rectangle $(a)$ of size $6\times 3$? $(b)$ of size $5\times 3$?
Let the medians of the triangle $ABC$ meet at $G$. Let $D$ and $E$ be different points on the line $BC$ such that $DC=CE=AB$, and let $P$ and $Q$ be points on the segments $BD$ and $BE$, respectively, such that $2BP=PD$ and $2BQ=QE$. Determine $\angle PGQ$.
Let the lines $e$ and $f$ be perpendicular and intersect each other at $H$. Let $A$ and $B$ lie on $e$ and $C$ and $D$ lie on $f$, such that all five points $A,B,C,D$ and $H$ are distinct. Let the lines $b$ and $d$ pass through $B$ and $D$ respectively, perpendicularly to $AC$; let the lines $a$ and $c$ pass through $A$ and $C$ respectively, perpendicularly to $BD$. Let $a$ and $b$ intersect at $X$ and $c$ and $d$ intersect at $Y$. Prove that $XY$ passes through $H$.
Let $n$ be a positive integer, let $p$ be prime and let $q$ be a divisor of $(n + 1)^p - n^p$. Show that $p$ divides $q - 1$.
A sequence $(x_n)_{n\ge 0}$ is defined as follows: $x_0=a,x_1=2$ and $x_n=2x_{n-1}x_{n-2}-x_{n-1}-x_{n-2}+1$ for all $n>1$. Find all integers $a$ such that $2x_{3n}-1$ is a perfect square for all $n\ge 1$.
Let $x$ and $y$ be positive integers and assume that $z=\frac{4xy}{x+y}$ is an odd integer. Prove that at least one divisor of $z$ can be expressed in the form $4n-1$ where $n$ is a positive integer.
Is it possible to find $2005$ different positive square numbers such that their sum is also a square number ?
Find all positive integers $n=p_1p_2 \cdots p_k$ which divide $(p_1+1)(p_2+1)\cdots (p_k+1)$ where $p_1 p_2 \cdots p_k$ is the factorization of $n$ into prime factors (not necessarily all distinct).