2006 China Team Selection Test

March 19th - Day 1

1

$ABCD$ is a trapezoid with $AB || CD$. There are two circles $\omega_1$ and $\omega_2$ is the trapezoid such that $\omega_1$ is tangent to $DA$, $AB$, $BC$ and $\omega_2$ is tangent to $BC$, $CD$, $DA$. Let $l_1$ be a line passing through $A$ and tangent to $\omega_2$(other than $AD$), Let $l_2$ be a line passing through $C$ and tangent to $\omega_1$ (other than $CB$). Prove that $l_1 || l_2$.

2

Find all positive integer pairs $(a,n)$ such that $\frac{(a+1)^n-a^n}{n}$ is an integer.

3

Given $n$ real numbers $a_1$, $a_2$ $\ldots$ $a_n$. ($n\geq 1$). Prove that there exists real numbers $b_1$, $b_2$ $\ldots$ $b_n$ satisfying: (a) For any $1 \leq i \leq n$, $a_i - b_i$ is a positive integer. (b)$\sum_{1 \leq i < j \leq n} (b_i - b_j)^2 \leq \frac{n^2-1}{12}$

March 20th - Day 2

1

Two positive valued sequences $\{ a_{n}\}$ and $\{ b_{n}\}$ satisfy: (a): $a_{0}=1 \geq a_{1}$, $a_{n}(b_{n+1}+b_{n-1})=a_{n-1}b_{n-1}+a_{n+1}b_{n+1}$, $n \geq 1$. (b): $\sum_{i=1}^{n}b_{i}\leq n^{\frac{3}{2}}$, $n \geq 1$. Find the general term of $\{ a_{n}\}$.

2

Let $\omega$ be the circumcircle of $\triangle{ABC}$. $P$ is an interior point of $\triangle{ABC}$. $A_{1}, B_{1}, C_{1}$ are the intersections of $AP, BP, CP$ respectively and $A_{2}, B_{2}, C_{2}$ are the symmetrical points of $A_{1}, B_{1}, C_{1}$ with respect to the midpoints of side $BC, CA, AB$. Show that the circumcircle of $\triangle{A_{2}B_{2}C_{2}}$ passes through the orthocentre of $\triangle{ABC}$.

3

Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is: \[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\] Find the least possible value of $n$.

March 22nd - Day 3

1

The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively. Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.

2

$x_{1}, x_{2}, \cdots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n}x_{i}= 1$. Prove that \[\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}\]

3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

March 24th - Day 4

1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2

Given three positive real numbers $ x$, $ y$, $ z$ such that $ x + y + z = 1$, prove that $ \frac {xy}{\sqrt {xy + yz}} + \frac {yz}{\sqrt {yz + zx}} + \frac {zx}{\sqrt {zx + xy}} \le \frac {\sqrt {2}}{2}$.

3

Find all second degree polynomial $d(x)=x^{2}+ax+b$ with integer coefficients, so that there exists an integer coefficient polynomial $p(x)$ and a non-zero integer coefficient polynomial $q(x)$ that satisfy: \[\left( p(x) \right)^{2}-d(x) \left( q(x) \right)^{2}=1, \quad \forall x \in \mathbb R.\]

March 26th - Day 5

1

Let $A$ be a non-empty subset of the set of all positive integers $N^*$. If any sufficient big positive integer can be expressed as the sum of $2$ elements in $A$(The two integers do not have to be different), then we call that $A$ is a divalent radical. For $x \geq 1$, let $A(x)$ be the set of all elements in $A$ that do not exceed $x$, prove that there exist a divalent radical $A$ and a constant number $C$ so that for every $x \geq 1$, there is always $\left| A(x) \right| \leq C \sqrt{x}$.

2

The function $f(n)$ satisfies $f(0)=0$, $f(n)=n-f \left( f(n-1) \right)$, $n=1,2,3 \cdots$. Find all polynomials $g(x)$ with real coefficient such that \[ f(n)= [ g(n) ], \qquad n=0,1,2 \cdots \] Where $[ g(n) ]$ denote the greatest integer that does not exceed $g(n)$.

3

Given positive integers $m$ and $n$ so there is a chessboard with $mn$ $1 \times 1$ grids. Colour the grids into red and blue (Grids that have a common side are not the same colour and the grid in the left corner at the bottom is red). Now the diagnol that goes from the left corner at the bottom to the top right corner is coloured into red and blue segments (Every segment has the same colour with the grid that contains it). Find the sum of the length of all the red segments.

March 28th - Day 6

1

Let the intersections of $\odot O_1$ and $\odot O_2$ be $A$ and $B$. Point $R$ is on arc $AB$ of $\odot O_1$ and $T$ is on arc $AB$ on $\odot O_2$. $AR$ and $BR$ meet $\odot O_2$ at $C$ and $D$; $AT$ and $BT$ meet $\odot O_1$ at $Q$ and $P$. If $PR$ and $TD$ meet at $E$ and $QR$ and $TC$ meet at $F$, then prove: $AE \cdot BT \cdot BR = BF \cdot AT \cdot AR$.

2

Prove that for any given positive integer $m$ and $n$, there is always a positive integer $k$ so that $2^k-m$ has at least $n$ different prime divisors.

3

$k$ and $n$ are positive integers that are greater than $1$. $N$ is the set of positive integers. $A_1, A_2, \cdots A_k$ are pairwise not-intersecting subsets of $N$ and $A_1 \cup A_2 \cup \cdots \cup A_k = N$. Prove that for some $i \in \{ 1,2,\cdots,k \}$, there exsits infinity many non-factorable n-th degree polynomials so that coefficients of one polynomial are pairwise distinct and all the coeficients are in $A_i$.

March 31st - Day 7

1

$H$ is the orthocentre of $\triangle{ABC}$. $D$, $E$, $F$ are on the circumcircle of $\triangle{ABC}$ such that $AD \parallel BE \parallel CF$. $S$, $T$, $U$ are the semetrical points of $D$, $E$, $F$ with respect to $BC$, $CA$, $AB$. Show that $S, T, U, H$ lie on the same circle.

2

Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.

3

For a positive integer $M$, if there exist integers $a$, $b$, $c$ and $d$ so that: \[ M \leq a < b \leq c < d \leq M+49, \qquad ad=bc \]then we call $M$ a GOOD number, if not then $M$ is BAD. Please find the greatest GOOD number and the smallest BAD number.

April 1st - Day 8

1

Let $k$ be an odd number that is greater than or equal to $3$. Prove that there exists a $k^{th}$-degree integer-valued polynomial with non-integer-coefficients that has the following properties: (1) $f(0)=0$ and $f(1)=1$; and. (2) There exist infinitely many positive integers $n$ so that if the following equation: \[ n= f(x_1)+\cdots+f(x_s), \]has integer solutions $x_1, x_2, \dots, x_s$, then $s \geq 2^k-1$.

2

Given positive integers $m$, $a$, $b$, $(a,b)=1$. $A$ is a non-empty subset of the set of all positive integers, so that for every positive integer $n$ there is $an \in A$ and $bn \in A$. For all $A$ that satisfy the above condition, find the minimum of the value of $\left| A \cap \{ 1,2, \cdots,m \} \right|$

3

$\triangle{ABC}$ can cover a convex polygon $M$.Prove that there exsit a triangle which is congruent to $\triangle{ABC}$ such that it can also cover $M$ and has one side line paralel to or superpose one side line of $M$.