Convex quadrilateral $ABCD$ is cyclic in circle $(O)$, $P$ is the intersection of the diagonals $AC$ and $BD$. Circle $(O_{1})$ passes through $P$ and $B$, circle $(O_{2})$ passes through $P$ and $A$, Circles $(O_{1})$ and $(O_{2})$ intersect at $P$ and $Q$. $(O_{1})$, $(O_{2})$ intersect $(O)$ at another points $E$, $F$ (besides $B$, $A$), respectively. Prove that $PQ$, $CE$, $DF$ are concurrent or parallel.
2005 China Team Selection Test
TST
Day 1
Given positive integer $n (n \geq 2)$, find the largest positive integer $\lambda$ satisfying : For $n$ bags, if every bag contains some balls whose weights are all integer powers of $2$ (the weights of balls in a bag may not be distinct), and the total weights of balls in every bag are equal, then there exists a weight among these balls such that the total number of balls with this weight is at least $\lambda$.
Let $n$ be a positive integer, and $a_j$, for $j=1,2,\ldots,n$ are complex numbers. Suppose $I$ is an arbitrary nonempty subset of $\{1,2,\ldots,n\}$, the inequality $\left|-1+ \prod_{j\in I} (1+a_j) \right| \leq \frac 12$ always holds. Prove that $\sum_{j=1}^n |a_j| \leq 3$.
Day 2
Let $a_{1}$, $a_{2}$, …, $a_{6}$; $b_{1}$, $b_{2}$, …, $b_{6}$ and $c_{1}$, $c_{2}$, …, $c_{6}$ are all permutations of $1$, $2$, …, $6$, respectively. Find the minimum value of $\sum_{i=1}^{6}a_{i}b_{i}c_{i}$.
Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$where $[x]$ denotes the largest integer not exceeding $x$.
Let $\alpha$ be given positive real number, find all the functions $f: N^{+} \rightarrow R$ such that $f(k + m) = f(k) + f(m)$ holds for any positive integers $k$, $m$ satisfying $\alpha m \leq k \leq (\alpha + 1)m$.
Quiz 1
Point $P$ lies inside triangle $ABC$. Let the projections of $P$ onto sides $BC$,$CA$,$AB$ be $D$, $E$, $F$ respectively. Let the projections from $A$ to the lines $BP$ and $CP$ be $M$ and $N$ respectively. Prove that $ME$, $NF$ and $BC$ are concurrent.
Let $a$, $b$, $c$ be nonnegative reals such that $ab+bc+ca = \frac{1}{3}$. Prove that \[\frac{1}{a^{2}-bc+1}+\frac{1}{b^{2}-ca+1}+\frac{1}{c^{2}-ab+1}\leq 3 \]
Let $a_1,a_2 \dots a_n$ and $x_1, x_2 \dots x_n$ be integers and $r\geq 2$ be an integer. It is known that \[\sum_{j=0}^{n} a_j x_j^k =0 \qquad \text{for} \quad k=1,2, \dots r.\]Prove that \[\sum_{j=0}^{n} a_j x_j^m \equiv 0 \pmod m, \qquad \text{for all}\quad m \in \{ r+1, r+2, \cdots, 2r+1 \}.\]
Quiz 2
Let $k$ be a positive integer. Prove that one can partition the set $\{ 0,1,2,3, \cdots ,2^{k+1}-1 \}$ into two disdinct subsets $\{ x_1,x_2, \cdots, x_{2k} \}$ and $\{ y_1, y_2, \cdots, y_{2k} \}$ such that $\sum_{i=1}^{2^k} x_i^m =\sum_{i=1}^{2^k} y_i^m$ for all $m \in \{ 1,2, \cdots, k \}$.
Cyclic quadrilateral $ABCD$ has positive integer side lengths $AB$, $BC$, $CA$, $AD$. It is known that $AD=2005$, $\angle{ABC}=\angle{ADC} = 90^o$, and $\max \{ AB,BC,CD \} < 2005$. Determine the maximum and minimum possible values for the perimeter of $ABCD$.
Let $a,b,c,d >0$ and $abcd=1$. Prove that: \[ \frac{1}{(1+a)^2}+\frac{1}{(1+b)^2}+\frac{1}{(1+c)^2}+\frac{1}{(1+d)^2} \geq 1 \]
Quiz 3
Triangle $ABC$ is inscribed in circle $\omega$. Circle $\gamma$ is tangent to $AB$ and $AC$ at points $P$ and $Q$ respectively. Also circle $\gamma$ is tangent to circle $\omega$ at point $S$. Let the intesection of $AS$ and $PQ$ be $T$. Prove that $\angle{BTP}=\angle{CTQ}$.
Determine whether $\sqrt{1001^2+1}+\sqrt{1002^2+1}+ \cdots + \sqrt{2000^2+1}$ be a rational number or not?
We call a matrix $\textsl{binary matrix}$ if all its entries equal to $0$ or $1$. A binary matrix is $\textsl{Good}$ if it simultaneously satisfies the following two conditions: (1) All the entries above the main diagonal (from left to right), not including the main diagonal, are equal. (2) All the entries below the main diagonal (from left to right), not including the main diagonal, are equal. Given positive integer $m$, prove that there exists a positive integer $M$, such that for any positive integer $n>M$ and a given $n \times n$ binary matrix $A_n$, we can select integers $1 \leq i_1 <i_2< \cdots < i_{n-m} \leq n$ and delete the $i_i$-th, $i_2$-th,$\cdots$, $i_{n-m}$-th rows and $i_i$-th, $i_2$-th,$\cdots$, $i_{n-m}$-th columns of $A_n$, then the resulting binary matrix $B_m$ is $\textsl{Good}$.
Quiz 4
Prove that for any $n$ ($n \geq 2$) pairwise distinct fractions in the interval $(0,1)$, the sum of their denominators is no less than $\frac{1}{3} n^{\frac{3}{2}}$.
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$. (1) Prove that $F,B,C,E$ are concyclic. (2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
Let $n$ be a positive integer, set $S_n = \{ (a_1,a_2,\cdots,a_{2^n}) \mid a_i=0 \ \text{or} \ 1, 1 \leq i \leq 2^n\}$. For any two elements $a=(a_1,a_2,\cdots,a_{2^n})$ and $b=(b_1,b_2,\cdots,b_{2^n})$ of $S_n$, define \[ d(a,b)= \sum_{i=1}^{2^n} |a_i - b_i| \] We call $A \subseteq S_n$ a $\textsl{Good Subset}$ if $d(a,b) \geq 2^{n-1}$ holds for any two distinct elements $a$ and $b$ of $A$. How many elements can the $\textsl{Good Subset}$ of $S_n$ at most have?
Quiz 5
Find all positive integers $m$ and $n$ such that the inequality: \[ [ (m+n) \alpha ] + [ (m+n) \beta ] \geq [ m \alpha ] + [n \beta] + [ n(\alpha+\beta)] \] is true for any real numbers $\alpha$ and $\beta$. Here $[x]$ denote the largest integer no larger than real number $x$.
Given prime number $p$. $a_1,a_2 \cdots a_k$ ($k \geq 3$) are integers not divible by $p$ and have different residuals when divided by $p$. Let \[ S_n= \{ n \mid 1 \leq n \leq p-1, (na_1)_p < \cdots < (na_k)_p \} \] Here $(b)_p$ denotes the residual when integer $b$ is divided by $p$. Prove that $|S|< \frac{2p}{k+1}$.
Find the least positive integer $n$ ($n\geq 3$), such that among any $n$ points (no three are collinear) in the plane, there exist three points which are the vertices of a non-isoscele triangle.
Quiz 6
Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m - 1$ and $ b^n - 1$ have the same prime divisors, then $ b + 1$ is a power of 2.
In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.
$n$ is a positive integer, $F_n=2^{2^{n}}+1$. Prove that for $n \geq 3$, there exists a prime factor of $F_n$ which is larger than $2^{n+2}(n+1)$.