Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$. (1) Prove that $F,B,C,E$ are concyclic. (2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
Problem
Source: China TST 2005
Tags: geometry, circumcircle, parallelogram, geometry unsolved
05.08.2006 20:33
AP is the A-symmedian of the triangle $\triangle ABC.$ Let O be the triangle circumcenter and K the symmedian point. (1) AEDF is a parallelogram, hence its diagonals AD, EF cut each other in half. Since the midpoint of EF lies on the A-symmedian AD, EF is antiparallel to BC with respect to the angle $\angle A,$ wich means that the points B, C, E, F are concyclic. (2) Let parallels to the B-, C-symmedians BK, CK through the foot $D \in BC$ of the A-symmedian $AK \equiv AD \equiv AP$ meet the rays (AB, (AC at B', C'. The triangles $\triangle AB'C' \sim \triangle ABC$ are centrally similar with the similarity center A and D is the symmedian point of the triangle $\triangle AB'C'.$ It immediately follows that the circumcircle $(A_{1})$ of the quadrilateral BCEF is the 1st Lemoine circle of the triangle $\triangle AB'C'$ centered at the midpoint X' of the segment DO', where O' is the circumcenter of this triangle. Therefore, $AA_{1}$ intersects the segment KO of the original triangle $\triangle ABC$ also at its midpoint X, the center of the 1st Lemoine circle of the original triangle. Simiarly, $BB_{1}, CC_{1}$ cut KO at its midpoint X, hence all three are concurrent at X.
05.02.2009 11:14
can someone define 1st Lemoine circle or give some links?
05.02.2009 12:05
$ \mbox{The three parallels to the sides of a triangle ABC through the Lemoine point of the triangle ABC, }$ $ \mbox{ determine on the sides of triangle ABC, 6 concyclic points.}$ $ \mbox{The circle of the 6 points is the 1-st Lemoine circle of triangle ABC.}$
27.05.2014 06:52
What's Lamoine point? Please help me .
23.02.2017 12:43
alpha-beta wrote: can someone define 1st Lemoine circle or give some links? can you explain me about Lemoin circle please
23.02.2017 18:35
Here is my solution with some angle and length chasing Disclaimer: This is definitely not as elegant as yetti's beautiful solution (), but it is much neater than I had originally expected it to be, which is the reason I decided to mention it anyway. $(1):$ By Thales' Theorem, $\frac{BD}{BC} = \frac{BF}{BA}$ and $\frac{CD}{CB} = \frac{CE}{CA}$. As $ADP$ is the symmedian, $\frac{BD}{DP} = \frac{AB^2}{AC^2}$ (as the symmedian is the reflection of the median over the angle bisector). This yields the following, where $a=BC$ etc. (we will use these in part $(2)$ as well): $BF=\frac{c^3}{b^2+c^2} ...(1)\\ \\AF=\frac{cb^2}{b^2+c^2} ...(2)\\ \\AE=\frac{bc^2}{b^2+c^2} ...(3)\\ \\CE=\frac{b^3}{b^2+c^2}...(4)$ From here we get $AF.AB = AE.AC = \frac{b^2c^2}{b^2+c^2}$ and concyclicity follows. $(2):$ Let the radius of circle $BFEC$ be $r$. Let $\angle BCF=\alpha \implies \angle BA_1F=2\alpha \implies \angle A_1BF=\angle A_1FB=90-\alpha \implies \angle A_1BC = B+\alpha-90 = \angle A_1CB \implies \angle A_1CE= 90-\alpha-B+C = \angle A_1EC \implies \angle CA_1E = 2(\alpha+B-C)$. Now, in $\Delta sA_1BF$ and $A_1CE$ we get, using equations $(1)$ and $(4)$ above, $2r sin \alpha = \frac{c^3}{b^2+c^2}$ and $2r sin (\alpha+B-C) = \frac{b^3}{b^2+c^2}$ $\implies \frac{sin \alpha}{sin (\alpha+B-C)} = \frac{c^3}{b^3} ...(5)$ Now we observe that, $\frac {[ABA_1]}{ACA_1]} = \frac{\frac{1}{2}AB. AA_1 sin \angle BAA_1}{\frac{1}{2}AC.AA_1 sin \angle CAA_1} = \frac{c}{b}.\frac{sin \angle BAA_1}{sin \angle CAA_1} ...(6)$ and $\frac {[ABA_1]}{ACA_1]} = \frac{\frac{1}{2} AB. BA_1 sin \angle ABA_1}{\frac{1}{2} AC.CA_1 sin \angle ACA_1} = \frac{c}{b}.\frac{sin(90-\alpha)}{sin(90-\alpha-B+C)} = \frac{c}{b}.\frac{cos \alpha}{cos (\alpha-B+C)} ...(7)$ $(6)$ and $(7)$ together imply $\frac{sin \angle BAA_1}{sin \angle CAA_1} = \frac{cos \alpha}{cos (\alpha-B+C)} ...(8)$ Now after some elementary manipulations on relation $(5)$ we get, $\frac{cos \alpha}{cos (\alpha-B+C)} = \frac{\frac{b^3}{c^3} - cos (B-C)}{\frac{b^3}{c^3}cos (B-C) - 1} ...(9)$ Finally we use $cos \theta = cos^2 \frac{\theta}{2} - sin^2 \frac{\theta}{2} = \frac{1-tan^2 \frac{\theta}{2}}{1+tan^2 \frac{\theta}{2}}$ (on $\theta = B-C$ duh ) and $tan \frac{B-C}{2} = \frac{b-c}{b+c}.cot\frac{A}{2}$ in relations $(8)$ and $(9)$ to finish the proof by the trigonometric form of Ceva's theorem.
02.01.2025 16:48
(1) Define $E,F$ as follows. Let the line passing through the midpoint of $AD$ which is antiparallel to $BC$ w.r.t $AB,AC$ intersect $AB,AC$ at $F,E\implies FBCE$ cyclic. Since $AD$ is isogonal to the $A$-median in $\triangle ABC$, it must be the $A$-median in $\triangle AEF\implies$ the midpoint of $AD$ (which is on $FE$) is also the midpoint of $FE$, so $AFDE$ is a parallelogram, so $E,F$ are the same $E,F$ in the problem statement. (2) Let $EF=a_A,AF=b_A,AE=c_A$. By similarity we get $a=BC=\frac{a_A(b_A^2+c_A^2)}{b_Ac_A}$ and $FB=\frac{c_A^2}{b_A}$. Let $\angle FBE = \angle FCE = \theta_A$. Similarly define $\theta_B,\theta_C$. Sine rule in $\triangle FEB$ gives us $$\frac{\sin (C-\theta_A)}{\sin \theta_A}=\frac{c_A^2}{a_Ab_A}=\frac{c^2}{ab}=\frac{\sin (C-\theta_B)}{\theta_B}$$by symmetry. Therefore the corresponding $\theta$ is the same for all 3 vertices. Let the feet from $A_1$ to $AB,AC$ be $M_a,N_a$. Note that $\angle FA_1M_a=\angle FEB=C-\theta$. $$\implies \frac{\sin \angle BAA_1}{\sin \angle CAA_1}=\frac{A_1M}{A_1N}=\frac{A_1M}{A_1F}\cdot\frac{A_1E}{A_1N}=\frac{\cos (C-\theta)}{\cos (B-\theta)}$$ Clearly the cyclic product of these is 1, so we're done by trig Ceva.