2017 USA TSTST

June 24th, 2017 - Day 1

1

Let $ABC$ be a triangle with circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. Assume that $AB\neq AC$ and that $\angle A \neq 90^{\circ}$. Let $M$ and $N$ be the midpoints of sides $AB$ and $AC$, respectively, and let $E$ and $F$ be the feet of the altitudes from $B$ and $C$ in $\triangle ABC$, respectively. Let $P$ be the intersection of line $MN$ with the tangent line to $\Gamma$ at $A$. Let $Q$ be the intersection point, other than $A$, of $\Gamma$ with the circumcircle of $\triangle AEF$. Let $R$ be the intersection of lines $AQ$ and $EF$. Prove that $PR\perp OH$. Proposed by Ray Li

2

Ana and Banana are playing a game. First Ana picks a word, which is defined to be a nonempty sequence of capital English letters. (The word does not need to be a valid English word.) Then Banana picks a nonnegative integer $k$ and challenges Ana to supply a word with exactly $k$ subsequences which are equal to Ana's word. Ana wins if she is able to supply such a word, otherwise she loses. For example, if Ana picks the word "TST", and Banana chooses $k=4$, then Ana can supply the word "TSTST" which has 4 subsequences which are equal to Ana's word. Which words can Ana pick so that she wins no matter what value of $k$ Banana chooses? (The subsequences of a string of length $n$ are the $2^n$ strings which are formed by deleting some of its characters, possibly all or none, while preserving the order of the remaining characters.) Proposed by Kevin Sun

3

Consider solutions to the equation \[x^2-cx+1 = \dfrac{f(x)}{g(x)},\]where $f$ and $g$ are polynomials with nonnegative real coefficients. For each $c>0$, determine the minimum possible degree of $f$, or show that no such $f,g$ exist. Proposed by Linus Hamilton and Calvin Deng

June 26th, 2017 - Day 2

4

Find all nonnegative integer solutions to $2^a + 3^b + 5^c = n!$. Proposed by Mark Sellke

5

Let $ABC$ be a triangle with incenter $I$. Let $D$ be a point on side $BC$ and let $\omega_B$ and $\omega_C$ be the incircles of $\triangle ABD$ and $\triangle ACD$, respectively. Suppose that $\omega_B$ and $\omega_C$ are tangent to segment $BC$ at points $E$ and $F$, respectively. Let $P$ be the intersection of segment $AD$ with the line joining the centers of $\omega_B$ and $\omega_C$. Let $X$ be the intersection point of lines $BI$ and $CP$ and let $Y$ be the intersection point of lines $CI$ and $BP$. Prove that lines $EX$ and $FY$ meet on the incircle of $\triangle ABC$. Proposed by Ray Li

6

A sequence of positive integers $(a_n)_{n \ge 1}$ is of Fibonacci type if it satisfies the recursive relation $a_{n + 2} = a_{n + 1} + a_n$ for all $n \ge 1$. Is it possible to partition the set of positive integers into an infinite number of Fibonacci type sequences? Proposed by Ivan Borsenco