2004 IberoAmerican

Day 1

1

It is given a 1001*1001 board divided in 1*1 squares. We want to amrk m squares in such a way that: 1: if 2 squares are adjacent then one of them is marked. 2: if 6 squares lie consecutively in a row or column then two adjacent squares from them are marked. Find the minimun number of squares we most mark.

2

In the plane are given a circle with center $ O$ and radius $ r$ and a point $ A$ outside the circle. For any point $ M$ on the circle, let $ N$ be the diametrically opposite point. Find the locus of the circumcenter of triangle $ AMN$ when $ M$ describes the circle.

3

Let $ n$ and $ k$ be positive integers such as either $ n$ is odd or both $ n$ and $ k$ are even. Prove that exists integers $ a$ and $ b$ such as $ GCD(a,n) = GCD(b,n) = 1$ and $ k = a + b$

Day 2

1

Determine all pairs $ (a,b)$ of positive integers, each integer having two decimal digits, such that $ 100a+b$ and $ 201a+b$ are both perfect squares.

2

Given a scalene triangle $ ABC$. Let $ A'$, $ B'$, $ C'$ be the points where the internal bisectors of the angles $ CAB$, $ ABC$, $ BCA$ meet the sides $ BC$, $ CA$, $ AB$, respectively. Let the line $ BC$ meet the perpendicular bisector of $ AA'$ at $ A''$. Let the line $ CA$ meet the perpendicular bisector of $ BB'$ at $ B'$. Let the line $ AB$ meet the perpendicular bisector of $ CC'$ at $ C''$. Prove that $ A''$, $ B''$ and $ C''$ are collinear.

3

Given a set $ \mathcal{H}$ of points in the plane, $ P$ is called an "intersection point of $ \mathcal{H}$" if distinct points $ A,B,C,D$ exist in $ \mathcal{H}$ such that lines $ AB$ and $ CD$ are distinct and intersect in $ P$. Given a finite set $ \mathcal{A}_{0}$ of points in the plane, a sequence of sets is defined as follows: for any $ j\geq0$, $ \mathcal{A}_{j+1}$ is the union of $ \mathcal{A}_{j}$ and the intersection points of $ \mathcal{A}_{j}$. Prove that, if the union of all the sets in the sequence is finite, then $ \mathcal{A}_{i}=\mathcal{A}_{1}$ for any $ i\geq1$.