Problem

Source: Iberoamerican 2004 problem 6

Tags: induction, quadratics, function, geometry, parallelogram, combinatorics proposed, combinatorics



Given a set $ \mathcal{H}$ of points in the plane, $ P$ is called an "intersection point of $ \mathcal{H}$" if distinct points $ A,B,C,D$ exist in $ \mathcal{H}$ such that lines $ AB$ and $ CD$ are distinct and intersect in $ P$. Given a finite set $ \mathcal{A}_{0}$ of points in the plane, a sequence of sets is defined as follows: for any $ j\geq0$, $ \mathcal{A}_{j+1}$ is the union of $ \mathcal{A}_{j}$ and the intersection points of $ \mathcal{A}_{j}$. Prove that, if the union of all the sets in the sequence is finite, then $ \mathcal{A}_{i}=\mathcal{A}_{1}$ for any $ i\geq1$.