1993 IberoAmerican

Day 1

1

A number is called capicua if when it is written in decimal notation, it can be read equal from left to right as from right to left; for example: $8, 23432, 6446$. Let $x_1<x_2<\cdots<x_i<x_{i+1},\cdots$ be the sequence of all capicua numbers. For each $i$ define $y_i=x_{i+1}-x_i$. How many distinct primes contains the set $\{y_1,y_2, \ldots\}$?

2

Show that for every convex polygon whose area is less than or equal to $1$, there exists a parallelogram with area $2$ containing the polygon.

3

Let $\mathbb{N}^*=\{1,2,\ldots\}$. Find al the functions $f: \mathbb{N}^*\rightarrow \mathbb{N}^*$ such that: (1) If $x<y$ then $f(x)<f(y)$. (2) $f\left(yf(x)\right)=x^2f(xy)$ for all $x,y \in\mathbb{N}^*$.

Day 2

1

Let $ABC$ be an equilateral triangle and $\Gamma$ its incircle. If $D$ and $E$ are points on the segments $AB$ and $AC$ such that $DE$ is tangent to $\Gamma$, show that $\frac{AD}{DB}+\frac{AE}{EC}=1$.

2

Let $P$ and $Q$ be two distinct points in the plane. Let us denote by $m(PQ)$ the segment bisector of $PQ$. Let $S$ be a finite subset of the plane, with more than one element, that satisfies the following properties: (i) If $P$ and $Q$ are in $S$, then $m(PQ)$ intersects $S$. (ii) If $P_1Q_1, P_2Q_2, P_3Q_3$ are three diferent segments such that its endpoints are points of $S$, then, there is non point in $S$ such that it intersects the three lines $m(P_1Q_1)$, $m(P_2Q_2)$, and $m(P_3Q_3)$. Find the number of points that $S$ may contain.

3

Two nonnegative integers $a$ and $b$ are tuanis if the decimal expression of $a+b$ contains only $0$ and $1$ as digits. Let $A$ and $B$ be two infinite sets of non negative integers such that $B$ is the set of all the tuanis numbers to elements of the set $A$ and $A$ the set of all the tuanis numbers to elements of the set $B$. Show that in at least one of the sets $A$ and $B$ there is an infinite number of pairs $(x,y)$ such that $x-y=1$.