Problem

Source: Spanish Communities

Tags: pigeonhole principle, geometry, circumcircle, rhombus, perpendicular bisector, combinatorics proposed, combinatorics



Let $P$ and $Q$ be two distinct points in the plane. Let us denote by $m(PQ)$ the segment bisector of $PQ$. Let $S$ be a finite subset of the plane, with more than one element, that satisfies the following properties: (i) If $P$ and $Q$ are in $S$, then $m(PQ)$ intersects $S$. (ii) If $P_1Q_1, P_2Q_2, P_3Q_3$ are three diferent segments such that its endpoints are points of $S$, then, there is non point in $S$ such that it intersects the three lines $m(P_1Q_1)$, $m(P_2Q_2)$, and $m(P_3Q_3)$. Find the number of points that $S$ may contain.