2013 Romania National Olympiad

Grade level 7

1

In the triangle $ABC$, the angle - bisector $AD$ ($D \in BC$) and the median $BE$ ($E \in AC$) intersect at point $P$. Lines $AB$ and $CP$ intesect at point $F$. The parallel through $B$ to $CF$ intersects $DF$ at point $M$. Prove that $DM = BF$

2

A die is an unitary cube with numbers from $1$ to $6$ written on its faces, so that each number appears once and the sum of the numbers on any two opposite faces is $7$. We construct a large $3 \cdot 3 \cdot 3$ cube using$ 27$ dice. Find all possible values of the sum of numbers which can be seen on the faces of the large cube.

3

Let $ABCD$ be a rectangle with $5AD <2 AB$ . On the side $AB$ consider the points $S$ and $T$ such that $AS = ST = TB$. Let $M, N$ and $P$ be the projections of points $A, S$ and $T$ on lines $DS, DT$ and $DB$ respectively .Prove that the points $M, N$, and $P$ are collinear if and only if $15 AD^2 = 2 AB^2$.

4

Let $n$ be a positive integer and $M = {1, 2, . . . , 2n + 1}$. Find out in how many ways we can split the set $M$ into three mutually disjoint nonempty sets $A,B,C$ so that both the following are true: (i) for each $a \in A$ and $b \in B$, the remainder of the division of $a$ by $b$ belongs to $C$ (ii) for each $c \in C$ there exists $a \in A$ and $b \in B$ such that $c$ is the remainder of the division of $a$ by $b$.

Grade level 8

1

The right prism $ABCA'B'C'$, with $AB = AC = BC = a$, has the property that there exists an unique point $M \in (BB')$ so that $AM \perp MC'$. Find the measure of the angle of the straight line $AM$ and the plane $(ACC')$ .

2

A rook starts moving on an infinite chessboard, alternating horizontal and vertical moves. The length of the first move is one square, of the second – two squares, of the third – three squares and so on. a) Is it possible for the rook to arrive at its starting point after exactly $2013$ moves? b) Find all $n$ for which it possible for the rook to come back to its starting point after exactly $n$ moves.

3

Find all real $x > 0$ and integer $n > 0$ so that $$ \lceil x \rceil+\left\{ \frac{1}{x}\right\}= 1.005 \cdot n.$$

4

A set $M$ of real numbers will be called special if it has the properties: (i) for each $x, y \in M, x\ne y$, the numbers $x + y$ and $xy$ are not zero and exactly one of them is rational; (ii) for each $x \in M, x^2$ is irrational. Find the maximum number of elements of a special set.

Grade level 9

1

A series of numbers is called complete if it has non-zero natural terms and any nonzero integer has at least one among multiple series. Show that the arithmetic progression is a complete sequence if and only if it divides the first term relationship.

2

Given $f:\mathbb{R}\to \mathbb{R}$ an arbitrary function and $g:\mathbb{R}\to \mathbb{R}$ a function of the second degree, with the property: for any real numbers m and n equation $f\left( x \right)=mx+n$ has solutions if and only if the equation $g\left( x \right)=mx+n$ has solutions Show that the functions $f$ and $g$ are equal.

3

Given $P$ a point m inside a triangle acute-angled $ABC$ and $DEF$ intersections of lines with that $AP$, $BP$, $CP$ with$\left[ BC \right],\left[ CA \right],$respective $\left[ AB \right]$ a) Show that the area of the triangle $DEF$ is at most a quarter of the area of the triangle $ABC$ b) Show that the radius of the circle inscribed in the triangle $DEF$ is at most a quarter of the radius of the circle circumscribed on triangle $4ABC.$

4

Consider a nonzero integer number $n$ and the function $f:\mathbb{N}\to \mathbb{N}$ by \[ f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x-1}{2} + 2^{n-1} & \text{if } x \text{ is odd} \end{cases}. \] Determine the set: \[ A = \{ x\in \mathbb{N} \mid \underbrace{\left( f\circ f\circ ....\circ f \right)}_{n\ f\text{'s}}\left( x \right)=x \}. \]

Grade level 10

1

Solve the following equation ${{2}^{{{\sin }^{4}}x-{{\cos }^{2}}x}}-{{2}^{{{\cos }^{4}}x-{{\sin }^{2}}x}}=\cos 2x$

2

To be considered the following complex and distinct $a,b,c,d$. Prove that the following affirmations are equivalent: i)For every $z\in \mathbb{C}$ the inequality takes place :$\left| z-a \right|+\left| z-b \right|\ge \left| z-c \right|+\left| z-d \right|$; ii)There is $t\in \left( 0,1 \right)$ so that $c=ta+\left( 1-t \right)b$ si $d=\left( 1-t \right)a+tb$

3

Find all injective functions$f:\mathbb{Z}\to \mathbb{Z}$ that satisfy: $\left| f\left( x \right)-f\left( y \right) \right|\le \left| x-y \right|$ ,for any $x,y\in \mathbb{Z}$.

4

a)Prove that $\frac{1}{2}+\frac{1}{3}+...+\frac{1}{{{2}^{m}}}<m$, for any $m\in {{\mathbb{N}}^{*}}$. b)Let ${{p}_{1}},{{p}_{2}},...,{{p}_{n}}$ be the prime numbers less than ${{2}^{100}}$. Prove that $\frac{1}{{{p}_{1}}}+\frac{1}{{{p}_{2}}}+...+\frac{1}{{{p}_{n}}}<10$

Grade level 11

1

Given A, non-inverted matrices of order n with real elements, $n\ge 2$ and given ${{A}^{*}}$adjoin matrix A. Prove that $tr({{A}^{*}})\ne -1$ if and only if the matrix ${{I}_{n}}+{{A}^{*}}$ is invertible.

2

Whether $m$ and $n$ natural numbers, $m,n\ge 2$. Consider matrices, ${{A}_{1}},{{A}_{2}},...,{{A}_{m}}\in {{M}_{n}}(R)$ not all nilpotent. Demonstrate that there is an integer number $k>0$ such that ${{A}^{k}}_{1}+{{A}^{k}}_{2}+.....+{{A}^{k}}_{m}\ne {{O}_{n}}$

3

A function \[\text{f:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] is called contract if, for every numbers $x,y\in \text{(0,}\infty \text{)}$ we have, $\underset{n\to \infty }{\mathop{\lim }}\,\left( {{f}^{n}}\left( x \right)-{{f}^{n}}\left( y \right) \right)=0$ where ${{f}^{n}}=\underbrace{f\circ f\circ ...\circ f}_{n\ f\text{'s}}$ a) Consider \[f:\text{(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] a function contract, continue with the property that has a fixed point, that existing ${{x}_{0}}\in \text{(0,}\infty \text{) }$ there so that $f\left( {{x}_{0}} \right)={{x}_{0}}.$ Show that $f\left( x \right)>x,$ for every $x\in \text{(0,}{{x}_{0}}\text{)}\,$ and $f\left( x \right)<x$, for every $x\in \text{(}{{x}_{0}}\text{,}\infty \text{)}\,$. b) Show that the given function \[f\text{:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] given by $f\left( x \right)=x+\frac{1}{x}$ is contracted but has no fix number.

4

a) Consider\[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] a differentiable and convex function .Show that $f\left( x \right)\le x$, for every $x\ge 0$, than ${f}'\left( x \right)\le 1$ ,for every $x\ge 0$ b) Determine \[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] differentiable and convex functions which have the property that $f\left( 0 \right)=0\,$, and ${f}'\left( x \right)f\left( f\left( x \right) \right)=x$, for every $x\ge 0$

Grade level 12

1

Determine continuous functions $f:\mathbb{R}\to \mathbb{R}$ such that $\left( {{a}^{2}}+ab+{{b}^{2}} \right)\int\limits_{a}^{b}{f\left( x \right)dx=3\int\limits_{a}^{b}{{{x}^{2}}f\left( x \right)dx,}}$ for every $a,b\in \mathbb{R}$ .

2

Given a ring $\left( A,+,\cdot \right)$ that meets both of the following conditions: (1) $A$ is not a field, and (2) For every non-invertible element $x$ of $ A$, there is an integer $m>1$ (depending on $x$) such that $x=x^2+x^3+\ldots+x^{2^m}$. Show that (a) $x+x=0$ for every $x \in A$, and (b) $x^2=x$ for every non-invertible $x\in A$.

3

Given $a\in (0,1)$ and $C$ the set of increasing functions $f:[0,1]\to [0,\infty )$ such that $\int\limits_{0}^{1}{f(x)}dx=1$ . Determine: $(a)\underset{f\in C}{\mathop{\max }}\,\int\limits_{0}^{a}{f(x)dx}$ $(b)\underset{f\in C}{\mathop{\max }}\,\int\limits_{0}^{a}{{{f}^{2}}(x)dx}$

4

Given $n\ge 2$ a natural number, $(K,+,\cdot )$ a body with commutative property that $\underbrace{1+...+}_{m}1\ne 0,m=2,...,n,f\in K[X]$ a polynomial of degree $n$ and $G$ a subgroup of the additive group $(K,+,\cdot )$, $G\ne K.$Show that there is $a\in K$ so$f(a)\notin G$.