Problem

Source:

Tags: function, limit, inequalities, real analysis, real analysis unsolved



A function \[\text{f:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] is called contract if, for every numbers $x,y\in \text{(0,}\infty \text{)}$ we have, $\underset{n\to \infty }{\mathop{\lim }}\,\left( {{f}^{n}}\left( x \right)-{{f}^{n}}\left( y \right) \right)=0$ where ${{f}^{n}}=\underbrace{f\circ f\circ ...\circ f}_{n\ f\text{'s}}$ a) Consider \[f:\text{(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] a function contract, continue with the property that has a fixed point, that existing ${{x}_{0}}\in \text{(0,}\infty \text{) }$ there so that $f\left( {{x}_{0}} \right)={{x}_{0}}.$ Show that $f\left( x \right)>x,$ for every $x\in \text{(0,}{{x}_{0}}\text{)}\,$ and $f\left( x \right)<x$, for every $x\in \text{(}{{x}_{0}}\text{,}\infty \text{)}\,$. b) Show that the given function \[f\text{:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] given by $f\left( x \right)=x+\frac{1}{x}$ is contracted but has no fix number.