2004 All-Russian Olympiad Regional Round

grade 8

8.1

On two intersecting roads with equal constant speeds Audi and BMW cars are moving fast. It turned out that as in 17.00, and at 18.00 the BMW was twice as far from the intersection, than ''Audi''. At what time could an Audi drive across the river?

8.2

There is a set of weights with the following properties: 1) It contains 5 weights, pairs of different weights. 2) For any two weights, there are two other weights of the same total weight. What is the smallest number of weights that can be in this set?

8.3

In an acute triangle, the distance from the midpoint of any side to the opposite vertex is equal to the sum of the distances from it to sides of the triangle. Prove that this triangle is equilateral.

8.4

The cells of the $11 \times 111 \times11$ cube contain the numbers $ 1, 2, , . .. . . 1331$, once each number. Two worms are sent from one corner cube to the opposite corner. Each of them can crawl into a cube adjacent to the edge, while the first can crawl if the number in the adjacent cube differs by $8$, the second - if they differ by $ 9$. Is there such an arrangement of numbers that both worms can get to the opposite corner cube?

8.5

Can a set of six numbers $\left\{a, b,c, \frac{a^2}{b} , \frac{b^2}{c} , \frac{c^2}{a} \right\}$ , where $a, b, c$ positive numbers, turn out to be exactly exactly three different numbers?

8.6

Let $ABCD$ be a quadrilateral with parallel sides $AD$ and $BC$, $M$ and $N$ are the midpoints of its sides $AB$ and $CD$, respectively. The straight line $MN$ bisects the segment connecting the centers of the circumcircles of triangles $ABC$ and $ADC$. Prove that $ABCD$ is a parallelogram.

8.7

A set of five-digit numbers $\{N_1,... ,N_k\}$ is such that any five-digit a number whose digits are all in ascending order is the same in at least one digit with at least one of the numbers $N_1$,$...$ ,$N_k$. Find the smallest possible value of $k$.

8.8

Is it possible to write natural numbers at all points of the plane with integer coordinates so that three points with integer coordinates lie on the same line if and only if the numbers written in them had a common divisor greater than one?

grade 9

same as 8.2 - 9.1

9.2

In triangle $ABC$, medians $AA'$, $BB'$, $CC'$ are extended until they intersect with the circumcircle at points $A_0$, $B_0$, $C_0$, respectively. It is known that the intersection point M of the medians of triangle $ABC$ divides the segment $AA_0$ in half. Prove that the triangle $A_0B_0C_0$ is isosceles.

same as 8.4 - 9.3

9.4

Three natural numbers are such that the product of any two of them is divided by the sum of these two numbers. Prove that these three numbers have a common divisor greater than one.

9.5

The cells of a $100 \times 100$ table contain non-zero numbers. It turned out that all $100$ hundred-digit numbers written horizontally are divisible by 11. Could it be that exactly $99$ hundred-digit numbers written vertically are also divisible by $11$?

9.6

Positive numbers $x, y, z$ are such that the absolute value of the difference of any two of them are less than $2$. Prove that $$ \sqrt{xy +1}+\sqrt{yz + 1}+\sqrt{zx+ 1} > x+ y + z.$$

9.7

Inside the parallelogram $ABCD$, point $M$ is chosen, and inside the triangle $AMD$, point $N$ is chosen in such a way that $$\angle MNA + \angle MCB =\angle MND + \angle MBC = 180^o.$$Prove that lines $MN$ and $AB$ are parallel.

grade 10

10.1

The sum of positive numbers $a, b, c$ is equal to $\pi/2$. Prove that $$\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.$$

same as 9.2 - 10.2

same as 9.4 - 10.3

10.4

$N \ge 3$ different points are marked on the plane. It is known that among pairwise distances between marked points there are not more than $n$ different distances. Prove that $N \le (n + 1)^2$.

10.5

Equation $$x^n + a_1x^{n-1} + a_2x^{n-2} +...+ a_{n-1}x + a_n = 0$$with integer non-zero coefficients $a_1$, $a_2$, $...$ , $a_n$ has $n$ different integer roots. Prove that if any two roots are relatively prime, then the numbers $a_{n-1}$ and $a_n$ are coprime.

10.6

A set of five-digit numbers $\{N_1, ...,N_k\}$ is such that any five-digit number, all of whose digits are in non-decreasing order, coincides in at least one digit with at least one of the numbers $N_1$, $...$ , $N_k$. Find the smallest possible value of $k$.

10.7

Circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. At point $A$ to $\omega_1$ and $\omega_2$ the tangents $\ell_1$ and $\ell_2$ are drawn respectively. The points $T_1$ and $T_2$ are chosen respectively on the circles $\omega_1$ and $\omega_2$ so that the angular measures of the arcs $T_1A$ and $AT_2$ are equal (the measure of the circular arc is calculated clockwise). The tangent $t_1$ at the point $ T_1$ to the circle $\omega_1$ intersects $\ell_2$ at the point $M_1$. Similarly, the tangent $t_2$ at the point $T_2$ to the circle $\omega_2$ intersects $\ell_1$ at point $M_2$. Prove that the midpoints of the segments $M_1M_2$ are on the same a straight line that does not depend on the position of points $T_1$, $T_2$.

10.8

Given natural numbers $p < k < n$. On an endless checkered plane some cells are marked so that in any rectangle $(k + 1) \times n$ ($n$ cells horizontally, $k + 1$ vertically) marked exactly $p$ cells. Prove that there is a $k \times (n + 1)$ rectangle ($n + 1$ cell horizontally, $k$ - vertically), in which no less than $p + 1$ cells.

grade 11

11.1

The Banana Republic language has more words than letters in its alphabet. Prove that there is a natural number $k$ for which we can choose $k$ different words that use exactly $k$ different letters.

11.2

Three circles $\omega_1$, $\omega_2$, $\omega_3$ of radius $r$ pass through the point$ S$ and internally touch the circle $\omega$ of radius $R$ ($R > r$) at points $T_1$, $T_2$, $T_3$ respectively. Prove that the line $T_1T_2$ passes through the second (different from $S$) intersection point of the circles $\omega_1$ and $\omega_2$.

11.3

Let the polynomial $P(x) = a_nx^n+a_{n-1}x^{n-1}+...+a_0$ has at least one real root and $a_0 \ne 0$. Prove that, consequently crossing out the monomials in the notation $P(x)$ in some order, we can obtain the number $a_0$ from it so that each intermediate polynomial also has at least one real root.

11.4

In a certain state there were 2004 cities connected by roads so that from any city one could get to any other. It is known that when it is prohibited to travel on any of the roads, the least of them any city could be reached to any other. The Minister of Transport and the Minister of Internal Affairs take turns introducing restrictions on the roads while there is possibility, one-way traffic (on one road per turn), and minister, after whose move it became impossible to leave any city to reach any other, immediately resigns. First the Minister of Transport walks. Can any of the ministers force the resignation of another, regardless of his performance? original wordingВ некотором государстве было 2004 города, соединенных дорогами так, что из любого города можно было добраться до любого другого. Известно, что при запрещенном проезде по любой из дорог, по-прежнему из любого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причем министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта. Может ли кто-либо из министров добиться отставки другого независимо от его игры?

same as 9.5 - 11.5

11.6

Let us call the distance between the numbers $\overline{a_1a_2a_3a_4a_5}$ and $\overline{b_1b_2b_3b_4b_5}$ the maximum $i$ for which $a_i \ne b_i$. All five-digit numbers are written out one after another in some order. What is the minimum possible sum of distances between adjacent numbers?

11.7

For what natural numbers $n$ for any numbers $a, b , c$, which are values of the angles of an acute triangle, the following inequality is true: $$\sin na + \sin nb + \sin nc < 0?$$

11.8

Given a triangular pyramid $ABCD$. Sphere $S_1$ passing through points $A$, $B$, $C$, intersects edges $AD$, $BD$, $CD$ at points $K$, $L$, $M$, respectively; sphere $S_2$ passing through points $A$, $B$, $D$ intersects the edges $AC$, $BC$, $DC$ at points $P$, $Q$, $M$ respectively. It turned out that $KL \parallel PQ$. Prove that the bisectors of plane angles $KMQ$ and $LMP$ are the same.