Find all pairs of real numbers $(x, y) $ such that: a) $x\ge y\ge1$ b) $2x^2-xy-5x +y + 4 = 0 $
1996 Romania National Olympiad
Grade VII
Find all real numbers $x$ for which the following equality holds : $$\sqrt{\frac{x-7}{1989}}+\sqrt{\frac{x-6}{1990}}+\sqrt{\frac{x-5}{1991}}=\sqrt{\frac{x-1989}{7}}+\sqrt{\frac{x-1990}{6}}+\sqrt{\frac{x-1991}{5}}$$
Let $AB CD$ be a rectangle with $AB=1$. If $m ( \angle BDC) = 82^o30'$, compute the length of$ BD$ and the cosine of $82^o30'$.
In the right triangle $ABC$ ($m ( \angle A) = 90^o$) $D$ is the foot of the altitude from $A$. The bisectors of the angles $ABD$ and $ADB$ intersect in $I_1$ and the bisectors of the angles $ACD$ and $ADC$ in $I_2$. Find the angles of the triangle if the sum of distances from $I_1$ and $I_2$ to $AD$ is equal to $\frac14$ of the length of $BC$.
Grade VIII
Let $a$ and $b$ be real numbers such that $a + b = 2$. Show that: $$\min \{|a|,|b|\} < 1 < \max \{|a|,|b|\} \Leftrightarrow a, b \in (-3,1)$$
Find all polynomials $p_n(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ ($n\geq 2$) with real and non-zero coeficients s.t. $p_n(x)-p_1(x)p_2(x)...p_{n-1}(x)$ be a constant polynomial.
Let $N, P$ be the centers of the faces A$BB'A'$ and $ADD'A'$, respectively, of a right parallelepiped $ABCDA'B'C'D'$ and $M \in (A'C)$ such that $A'M= \frac13 A' C$. Prove that $MN \perp AB'$ and $ MP \perp AD' $ if and only if the parallelepiped is a cube.
a) Let $AB CD$ be a regular tetrahedron. On the sides $AB$, $AC$ and $AD$, the points $M$, $N$ and $P$, are considered. Determine the volume of the tetrahedron $AMNP$ in terms of $x, y, z$, where $x=AM$, $y=AN$, $z=AP$. b) Show that for any real numbers $x, y, z, t, u, v \in (0, 1)$ : $$xyz + uv(1- x) + (1- y)(1- v)t + (1- z)(1- w)(1- t) < 1.$$
Grade IX
Let $a, b, c \in R,$ $a \ne 0$, such that $a$ and $4a+3b+2c$ have the same sign. Show that the equation $ax^2+bx+c=0$ cannot have both roots in the interval $(1,2)$.
$ a,b,c,d \in [0,1]$ and $ x,y,z,t \in [0, \frac{1}{2}]$ and $ a+b+c+d=x+y+z+t=1$.prove that: $ (i)$ $ ax+by+cz+dt$ $ \geq$ $ min( {\frac{a+b}{2} , \frac{b+c}{2} , \frac{c+d}{2} , \frac{d+a}{2} , \frac{a+c}{2} , \frac{b+d}{2} )}$ $ (ii)$ $ ax+by+cz+dt$ $ \geq$ $ 54abcd$
Prove that $ \forall x\in \mathbb{R} $ , $ \cos ^7x+\cos ^7(x+\frac {2\pi}{3})+\cos ^7(x+\frac {4\pi}{3})=\frac {63}{64}\cos 3x $
In the triangle $ABC$ the incircle $J$ touches the sides $BC$, $CA$, $AB$ in $D$, $E$, $F$, respectively. The segments $(BE)$ and $(CF)$ intersect $J$ in $G,H$. If $B$ and $C$ are fixed points, find the loci of points $A, D, E, F, G, H$ if $GH \parallel BC$ and the loci of the same points if $BCHG$ is an inscriptible quadrilateral.
Grade X
For $n ,p \in N^*$ , $ 1 \le p \le n$, we define $$ R_n^p = \sum_{k=0}^p (p-k)^n(-1)^k C_{n+1}^k $$Show that: $R_n^{n-p+1} =R_n^p$ .
Let $ABCD$ a tetrahedron and $M$ a variable point on the face $BCD$. The line perpendicular to $(BCD)$ in $M$ . intersects the planes$ (ABC)$, $(ACD)$, and $(ADB)$ in $M_1$, $M_2$, and $M_3$. Show that the sum $MM_1 + MM_2 + MM_3$ is constant if and only if the perpendicular dropped from $A$ to $(BCD)$ passes through the centroid of triangle $BCD$.
Let $P$ a convex regular polygon with $n$ sides, having the center $O$ and $\angle xOy$ an angle of measure $a$, $a \in (0,k)$. Let $S$ be the area of the common part of the interiors of the polygon and the angle. Find, as a function of $n$, the values of $a$ such that $S$ remains constant when $\angle xOy$ is rotating around $O$.
Let $a,b,c\in Z$ and $a$ be the even number and $b$ be the odd number. Show that for every integer $n$ there exist one positive integer $x$ such that $2^n\mid ax^2+bx+c$
Grade XI
Suppose that $f_1,f_2,...,f_n: \mathbb{R}\rightarrow \mathbb{R}$ are the periodic functions and $f=f_1+f_2+...+f_n , f:\mathbb{R} \rightarrow \mathbb{R}$ has an finite limit in $+\infty$. Prove that $f$ is the constant function.
Grade XII
Suppose that $ f: [a,b]\rightarrow \mathbb{R} $ be a monotonic function and for every $ x_1,x_2\in [a,b] $ that $ x_1<x_2 $ ,there exist $ c\in (a,b) $ such that $ \int _{x_1}^{x_2}f(x)dx=f(c)(x_1-x_2) $ a) Show that $ f $ be the continuous function on interval $ (a,b) $ b) Suppose that $ f $ is integrable function on interval $ [a,b] $ but $ f $ isn't a monotonic function then ,is it the result of part a) right?