The localities $P_1, P_2, \dots, P_{1983}$ are served by ten international airlines $A_1,A_2, \dots , A_{10}$. It is noticed that there is direct service (without stops) between any two of these localities and that all airline schedules offer round-trip flights. Prove that at least one of the airlines can offer a round trip with an odd number of landings.
1983 IMO Shortlist
Let $n$ be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors $d$ of $n$ (including $1$ and $n$). We say that an integer $m \geq 1$ is superabundant (P.Erdos, $1944$) if $\forall k \in \{1, 2, \dots , m - 1 \}$, $\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}.$ Prove that there exists an infinity of superabundant numbers.
Let $ABC$ be an equilateral triangle and $\mathcal{E}$ the set of all points contained in the three segments $AB$, $BC$, and $CA$ (including $A$, $B$, and $C$). Determine whether, for every partition of $\mathcal{E}$ into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle.
On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.
Consider the set of all strictly decreasing sequences of $n$ natural numbers having the property that in each sequence no term divides any other term of the sequence. Let $A = (a_j)$ and $B = (b_j)$ be any two such sequences. We say that $A$ precedes $B$ if for some $k$, $a_k < b_k$ and $a_i = b_i$ for $i < k$. Find the terms of the first sequence of the set under this ordering.
Suppose that ${x_1, x_2, \dots , x_n}$ are positive integers for which $x_1 + x_2 + \cdots+ x_n = 2(n + 1)$. Show that there exists an integer $r$ with $0 \leq r \leq n - 1$ for which the following $n - 1$ inequalities hold: \[x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad \forall i, 1 \leq i \leq n - r; \] \[x_{r+1} + \cdots + x_n + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.\] Prove that if all the inequalities are strict, then $r$ is unique and that otherwise there are exactly two such $r.$
Let $a$ be a positive integer and let $\{a_n\}$ be defined by $a_0 = 0$ and \[a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).\] Show that for each positive integer $n$, $a_n$ is a positive integer.
In a test, $3n$ students participate, who are located in three rows of $n$ students in each. The students leave the test room one by one. If $N_1(t), N_2(t), N_3(t)$ denote the numbers of students in the first, second, and third row respectively at time $t$, find the probability that for each t during the test, \[|N_i(t) - N_j(t)| < 2, i \neq j, i, j = 1, 2, \dots .\]
Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a - b) + b^{2}c(b - c) + c^{2}a(c - a)\ge 0. \] Determine when equality occurs.
Let $p$ and $q$ be integers. Show that there exists an interval $I$ of length $1/q$ and a polynomial $P$ with integral coefficients such that \[ \left|P(x)-\frac pq \right| < \frac{1}{q^2}\]for all $x \in I.$
Let $f : [0, 1] \to \mathbb R$ be continuous and satisfy: \[ \begin{cases}bf(2x) = f(x), &\mbox{ if } 0 \leq x \leq 1/2,\\ f(x) = b + (1 - b)f(2x - 1), &\mbox{ if } 1/2 \leq x \leq 1,\end{cases}\]where $b = \frac{1+c}{2+c}$, $c > 0$. Show that $0 < f(x)-x < c$ for every $x, 0 < x < 1.$
Find all functions $f$ defined on the set of positive reals which take positive real values and satisfy: $f(xf(y))=yf(x)$ for all $x,y$; and $f(x)\to0$ as $x\to\infty$.
Let $E$ be the set of $1983^3$ points of the space $\mathbb R^3$ all three of whose coordinates are integers between $0$ and $1982$ (including $0$ and $1982$). A coloring of $E$ is a map from $E$ to the set {red, blue}. How many colorings of $E$ are there satisfying the following property: The number of red vertices among the $8$ vertices of any right-angled parallelepiped is a multiple of $4$ ?
Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?
Decide whether there exists a set $M$ of positive integers satisfying the following conditions: (i) For any natural number $m>1$ there exist $a, b \in M$ such that $a+b = m.$ (ii) If $a, b, c, d \in M$, $a, b, c, d > 10$ and $a + b = c + d$, then $a = c$ or $a = d.$
Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$
Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]
Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.
Let $(F_n)_{n\geq 1} $ be the Fibonacci sequence $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n (n \geq 1),$ and $P(x)$ the polynomial of degree $990$ satisfying \[ P(k) = F_k, \qquad \text{ for } k = 992, . . . , 1982.\] Prove that $P(1983) = F_{1983} - 1.$
Find all solutions of the following system of $n$ equations in $n$ variables: \[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\] where $a$ is a given number.
Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{\frac{1}{1983} -1}.$
Let $n$ be a positive integer having at least two different prime factors. Show that there exists a permutation $a_1, a_2, \dots , a_n$ of the integers $1, 2, \dots , n$ such that \[\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_k}{n}=0.\]
Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.
Let $d_n$ be the last nonzero digit of the decimal representation of $n!$. Prove that $d_n$ is aperiodic; that is, there do not exist $T$ and $n_0$ such that for all $n \geq n_0, d_{n+T} = d_n.$
Prove that every partition of $3$-dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb R^+$, there are points $M$ and $N$ inside that subset such that distance between $M$ and $N$ is exactly $a.$