On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.
Problem
Source:
Tags: trigonometry, geometry, parallelogram, Triangle, IMO Shortlist
10.09.2010 02:19
05.06.2014 14:33
From the similar isisceles triangles we get $\frac{BP}{AB}=\frac{CQ}{AC}=\frac{BR}{BC}=k$.We also have $\angle{PBR}=B$ Using the cosine rule in $\triangle{BRP}$ we get ${PR^2=BR^2+BR^2-2BP*BRcosB=k^2(AB^2+BC^2-2AB*BCcosB}=(ACk)^2=QC^2=QA^2 \Rightarrow PR=AQ$ Similarly $AP=RQ$ and the result follows.
05.06.2014 16:12
Dear Mathlinkers, you can se on synthetic proof on http://perso.orange.fr/jl.ayme vol. 16 Deux triangles semblables..., p. 14-17. Sincerely Jean-Louis
05.06.2014 18:47
Solution (math class A΄ high school) \[\begin{gathered} \left. \begin{gathered} \frac{{PB}}{{AB}} = \frac{{RB}}{{CB}} \hfill \\ P\hat BR = A\hat BC \hfill \\ \end{gathered} \right\}\mathop {}\limits^{} \Rightarrow \mathop {}\limits^{} tr.PBR \approx tr.ACB\mathop {}\limits^{} \Rightarrow \mathop {}\limits^{} {{\hat P}_2} = {{\hat A}_1} \hfill \\ \bullet \mathop {}\limits^{\mathop {}\limits^{} } similarly\mathop {}\limits^{} \mathop {}\limits^{} {{\hat Q}_2} = {{\hat A}_1}\mathop {}\limits^{} \mathop {}\limits^{} So\mathop {}\limits^{} :\mathop {}\limits^{} {{\hat P}_1} = {{\hat Q}_1}\mathop {}\limits_{\mathop {}\nolimits_{} } \hfill \\ \left. \begin{gathered} {{\hat P}_1} + {{\hat P}_2} = {{\hat A}_1} + 2\varphi \mathop {}\limits_{} \hfill \\ {A_1} + 2\varphi + {{\hat R}_1} + {{\hat R}_2} + \theta = {360^o} \hfill \\ \end{gathered} \right\}\mathop {}\limits_{} \Rightarrow \mathop {}\limits^{} \theta = {{\hat A}_1} + 2\varphi \mathop {}\limits_{\mathop {}\limits_{\mathop {}\limits_{\mathop {}\limits_{} } } } \hfill \\ \left. \begin{gathered} {{\hat P}_1} = {{\hat Q}_1} \hfill \\ \theta = {{\hat A}_1} + 2\varphi \hfill \\ \end{gathered} \right\}\mathop {}\limits^{} \Rightarrow \mathop {}\limits^{} APRQ\mathop {}\limits^{} \# \hfill \\ \end{gathered} \]
Attachments:
13.12.2022 03:27
Let $a, b, c$ lie on the unit circle without loss of generality. Then,$$p = \frac{a+b}2 + (a+b) \cdot k\frac{|a-b|}{|a+b|}$$and similarly for $q$ for some fixed real constant $k$ by the similarity condition. So, stripping away terms, it suffices to show that$$\sum_{\mathrm{cyc}} \frac{(a+b)|a-b|}{|a+b|} = 0$$after canceling the $k$ term. Notice that each term represents a vector perpendicular to one of the sides with the same length as that side. The angles formed by the three vectors are congruent (directed) to each other, so they must form a closed triangle, as needed.