2008 Iran MO (2nd Round)

Day 1

1

In how many ways, can we draw $n-3$ diagonals of a $n$-gon with equal sides and equal angles such that: $i)$ none of them intersect each other in the polygonal. $ii)$ each of the produced triangles has at least one common side with the polygonal.

2

Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.

3

Let $a,b,c,$ and $d$ be real numbers such that at least one of $c$ and $d$ is non-zero. Let $ f:\mathbb{R}\to\mathbb{R}$ be a function defined as $f(x)=\frac{ax+b}{cx+d}$. Suppose that for all $x\in\mathbb{R}$, we have $f(x) \neq x$. Prove that if there exists some real number $a$ for which $f^{1387}(a)=a$, then for all $x$ in the domain of $f^{1387}$, we have $f^{1387}(x)=x$. Notice that in this problem, \[f^{1387}(x)=\underbrace{f(f(\cdots(f(x)))\cdots)}_{\text{1387 times}}.\] Hint. Prove that for every function $g(x)=\frac{sx+t}{ux+v}$, if the equation $g(x)=x$ has more than $2$ roots, then $g(x)=x$ for all $x\in\mathbb{R}-\left\{\frac{-v}{u}\right\}$.

Day 2

1

$\mathbb{N}$ is the set of positive integers and $a\in\mathbb{N}$. We know that for every $n\in\mathbb{N}$, $4(a^n+1)$ is a perfect cube. Prove that $a=1$.

2

We want to choose telephone numbers for a city. The numbers have $10$ digits and $0$ isn’t used in the numbers. Our aim is: We don’t choose some numbers such that every $2$ telephone numbers are different in more than one digit OR every $2$ telephone numbers are different in a digit which is more than $1$. What is the maximum number of telephone numbers which can be chosen? In how many ways, can we choose the numbers in this maximum situation?

3

In triangle $ABC$, $H$ is the foot of perpendicular from $A$ to $BC$. $O$ is the circumcenter of $\Delta ABC$. $T,T'$ are the feet of perpendiculars from $H$ to $AB,AC$, respectively. We know that $AC=2OT$. Prove that $AB=2OT'$.