Problem

Source:

Tags: function, algebra proposed, algebra



Let $a,b,c,$ and $d$ be real numbers such that at least one of $c$ and $d$ is non-zero. Let $ f:\mathbb{R}\to\mathbb{R}$ be a function defined as $f(x)=\frac{ax+b}{cx+d}$. Suppose that for all $x\in\mathbb{R}$, we have $f(x) \neq x$. Prove that if there exists some real number $a$ for which $f^{1387}(a)=a$, then for all $x$ in the domain of $f^{1387}$, we have $f^{1387}(x)=x$. Notice that in this problem, \[f^{1387}(x)=\underbrace{f(f(\cdots(f(x)))\cdots)}_{\text{1387 times}}.\] Hint. Prove that for every function $g(x)=\frac{sx+t}{ux+v}$, if the equation $g(x)=x$ has more than $2$ roots, then $g(x)=x$ for all $x\in\mathbb{R}-\left\{\frac{-v}{u}\right\}$.