Let $a,b,c\geq 0$ and $a+b+c=1.$ Prove that$$\frac{a}{2a+1}+\frac{b}{3b+1}+\frac{c}{6c+1}\leq \frac{1}{2}.$$(Marian Dinca)
2021 Austrian MO National Competition
Preliminary Round (May 1, 2021)
Let $ABC$ denote a triangle. The point $X$ lies on the extension of $AC$ beyond $A$, such that $AX = AB$. Similarly, the point $Y$ lies on the extension of $BC$ beyond $B$ such that $BY = AB$. Prove that the circumcircles of $ACY$ and $BCX$ intersect a second time in a point different from $C$ that lies on the bisector of the angle $\angle BCA$. (Theresia Eisenkölbl)
Let $n \ge 3$ be an integer. On a circle, there are $n$ points. Each of them is labelled with a real number at most $1$ such that each number is the absolute value of the difference of the two numbers immediately preceding it in clockwise order. Determine the maximal possible value of the sum of all numbers as a function of $n$. (Walther Janous)
On a blackboard, there are $17$ integers not divisible by $17$. Alice and Bob play a game. Alice starts and they alternately play the following moves: $\bullet$ Alice chooses a number $a$ on the blackboard and replaces it with $a^2$ $\bullet$ Bob chooses a number $b$ on the blackboard and replaces it with $b^3$. Alice wins if the sum of the numbers on the blackboard is a multiple of $17$ after a finite number of steps. Prove that Alice has a winning strategy. (Daniel Holmes)
Final Round, Day 1 (June 4, 2021)
Let $a, b$ and $c$ be pairwise different natural numbers. Prove $\frac{a^3 + b^3 + c^3}{3} \ge abc + a + b + c$. When does equality holds? (Karl Czakler)
Mr. Ganzgenau would like to take his tea mug out of the microwave right at the front. But Mr. Ganzgenau's microwave doesn't really want to be very precise play along. To be precise, the two of them play the following game: Let $n$ be a positive integer. The turntable of the microwave makes one in $n$ seconds full turn. Each time the microwave is switched on, an integer number of seconds turned either clockwise or counterclockwise so that there are n possible positions in which the tea mug can remain. One of these positions is right up front. At the beginning, the microwave turns the tea mug to one of the $n$ possible positions. After that Mr. Ganzgenau enters an integer number of seconds in each move, and the microwave decides either clockwise or counterclockwise this number of spin for seconds. For which $n$ can Mr. Ganzgenau force the tea cup after a finite number of puffs to be able to take it out of the microwave right up front? (Birgit Vera Schmidt) original wording, in case it doesn't make much senseHerr Ganzgenau möchte sein Teehäferl ganz genau vorne aus der Mikrowelle herausnehmen. Die Mikrowelle von Herrn Ganzgenau möchte da aber so ganz genau gar nicht mitspielen. Ganz genau gesagt spielen die beiden das folgende Spiel: Sei n eine positive ganze Zahl. In n Sekunden macht der Drehteller der Mikrowelle eine vollständige Umdrehung. Bei jedem Einschalten der Mikrowelle wird eine ganzzahlige Anzahl von Sekunden entweder im oder gegen den Uhrzeigersinn gedreht, sodass es n mögliche Positionen gibt, auf denen das Teehäferl stehen bleiben kann. Eine dieser Positionen ist ganz genau vorne. Zu Beginn dreht die Mikrowelle das Teehäferl auf eine der n möglichen Positionen. Danach gibt Herr Ganzgenau in jedem Zug eine ganzzahlige Anzahl von Sekunden ein, und die Mikrowelle entscheidet, entweder im oder gegen den Uhrzeigersinn diese Anzahl von Sekunden lang zu drehen. Für welche n kann Herr Ganzgenau erzwingen, das Teehäferl nach endlich vielen Zügen ganz genau vorne aus der Mikrowelle nehmen zu können? (Birgit Vera Schmidt)
Find all triples $(a, b, c)$ of natural numbers $a, b$ and $c$, for which $a^{b + 20} (c-1) = c^{b + 21} - 1$ is satisfied. (Walther Janous)
Final Round, Day 2 (June 5, 2021)
Let $a$ be a real number. Determine all functions $f: R \to R$ with $f (f (x) + y) = f (x^2 - y) + af (x) y$ for all $x, y \in R$. (Walther Janous)
Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie. (a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it. (b) Show that in all other cases the four points thus obtained lie on one circle. (Theresia Eisenkölbl)
Let $p$ be an odd prime number and $M$ a set derived from $\frac{p^2 + 1}{2}$ square numbers. Investigate whether $p$ elements can be selected from this set whose arithmetic mean is an integer. (Walther Janous)