2024 Francophone Mathematical Olympiad

March 23, 2024

Junior

1

Find the largest integer $k$ with the following property: Whenever real numbers $x_1,x_2,\dots,x_{2024}$ satisfy \[x_1^2=(x_1+x_2)^2=\dots=(x_1+x_2+\dots+x_{2024})^2,\]at least $k$ of them are equal.

2

Given $n \ge 2$ points on a circle, Alice and Bob play the following game. Initially, a tile is placed on one of the points and no segment is drawn. The players alternate in turns, with Alice to start. In a turn, a player moves the tile from its current position $P$ to one of the $n-1$ other points $Q$ and draws the segment $PQ$. This move is not allowed if the segment $PQ$ is already drawn. If a player cannot make a move, the game is over and the opponent wins. Determine, for each $n$, which of the two players has a winning strategy.

3

Let $ABC$ be an acute triangle with $AB<AC$ and let $O$ be its circumcenter. Let $D$ be a point on the segment $AC$ such that $AB=AD$. Let $E$ be the intersection of the line $AB$ with the perpendicular line to $AO$ through $D$. Let $F$ be the intersection of the perpendicular line to $OC$ through $C$ with the line parallel to $AC$ and passing through $E$. Finally, let the lines $CE$ and $DF$ intersect in $G$. Show that $AG$ and $BF$ are parallel.

4

Find all integers $n \ge 2$ for which there exists $n$ integers $a_1,a_2,\dots,a_n \ge 2$ such that for all indices $i \ne j$, we have $a_i \mid a_j^2+1$.

Senior

1

Let $d$ and $m$ be two fixed positive integers. Pinocchio and Geppetto know the values of $d$ and $m$ and play the following game: In the beginning, Pinocchio chooses a polynomial $P$ of degree at most $d$ with integer coefficients. Then Geppetto asks him questions of the following form "What is the value of $P(n)$?'' for $n \in \mathbb{Z}$. Pinocchio usually says the truth, but he can lie up to $m$ times. What is, as a function of $d$ and $m$, the minimal number of questions that Geppetto needs to ask to be sure to determine $P$, no matter how Pinocchio chooses to reply?

2

Given a positive integer $n \ge 2$, let $\mathcal{P}$ and $\mathcal{Q}$ be two sets, each consisting of $n$ points in three-dimensional space. Suppose that these $2n$ points are distinct. Show that it is possible to label the points of $\mathcal{P}$ as $P_1,P_2,\dots,P_n$ and the points of $\mathcal{Q}$ as $Q_1,Q_2,\dots,Q_n$ such that for any indices $i$ and $j$, the balls of diameters $P_iQ_i$ and $P_jQ_j$ have at least one common point.

3

Let $ABC$ be an acute triangle, $\omega$ its circumcircle and $O$ its circumcenter. The altitude from $A$ intersects $\omega$ in a point $D \ne A$ and the segment $AC$ intersects the circumcircle of $OCD$ in a point $E \ne C$. Finally, let $M$ be the midpoint of $BE$. Show that $DE$ is parallel to $OM$.

4

Let $p$ be a fixed prime number. Find all integers $n \ge 1$ with the following property: One can partition the positive divisors of $n$ in pairs $(d,d')$ satisfying $d<d'$ and $p \mid \left\lfloor \frac{d'}{d}\right\rfloor$.