Given a positive integer $n \ge 2$, let $\mathcal{P}$ and $\mathcal{Q}$ be two sets, each consisting of $n$ points in three-dimensional space. Suppose that these $2n$ points are distinct. Show that it is possible to label the points of $\mathcal{P}$ as $P_1,P_2,\dots,P_n$ and the points of $\mathcal{Q}$ as $Q_1,Q_2,\dots,Q_n$ such that for any indices $i$ and $j$, the balls of diameters $P_iQ_i$ and $P_jQ_j$ have at least one common point.
Problem
Source: Francophone 2024, Senior P2
Tags: combinatorics, combinatorial geometry, 3D geometry, geometry