2022 Costa Rica - Final Round

Day 1

1

Let $\Gamma$ be a circle with center $O$. Consider the points $A$, $B$, $C$, $D$, $E$ and $F$ in $\Gamma$, with $D$ and $E$ in the (minor) arc $BC$ and $C$ in the (minor) arc $EF$, such that $DEFO$ is a rhombus and $\vartriangle ABC$ It is equilateral. Show that $\overleftrightarrow{BD}$ and $\overleftrightarrow{CE}$ are perpendicular.

2

Find all functions $f$, of the form $f(x) = x^3 +px^2 +qx+r$ with $p$, $q$ and $r$ integers, such that $f(s) = 506$ for some integer $s$ and $f(\sqrt3) = 0$.

3

Shikaku and his son Shikamaru must climb a staircase that has $2022$ steps; the steps are listed $1$, $2$, $...$ , $2022$ and the floor is considered step $0$. This bores them both a lot, so so they decide to organize a game. They begin by tying a rope between them, so that At most they can be separated from each other by a distance of $7$ steps, that is, if they are in the steps $m$ and$ n$, then it must always be true that $|m-n| \le 7$. For the game they establish the following rules: a) They move alternately in turns. b) In his corresponding turn, the player must move to a higher step than in the one that (the same) was previously. c) If a player has just moved to the $n$-th step, then on the next turn the other player cannot be moved to any of the steps $n-1$, $n$ or $n + 1$, except when it is for reach the last step. d) Whoever reaches the last step (listed with $2022$) wins. Shikamaru is bored to start, so his father starts. Determine which of the two players has a winning strategy and describe it.

Day 2

4

Maria was a brilliant mathematician who found the following property about her year of birth: if $f$ is a function defined in the set of natural numbers $N = \{0, 1, 2, 3, 4, 5,...\}$ such that $f(1) = 1335$ and $f(n+1) = f(n)-2n+43$ for all $n \in N$, then his year of birth is the maximum value that $f(n)$ can reach when $n$ takes values in $N$. Determine the year of birth of Mary.

5

The $1$st edition of OLCOMA was organized in $1989$, so in $2022$ the $34$th edition will be celebrated. Suppose that the Olympics will continue to be held annually without interruption. We say that a year $N$ is good if the OLCOMA edition number of that year divides the product $N(N +1)$. For example, the year $2022$ is good because $34$ divides $2022 \cdot 2023$. Determine the last year $N$ in the $21$st century, $2000\le N \le 2099$, which is good.

6

Consider $ABC$ with $AC > AB$ and incenter $I$. The midpoints of $\overline{BC}$ and $\overline{AC}$ are $M$ and $N$, respectively. If $\overline{AI}$ is perpendicular to $\overline{IN}$, then prove that $\overline{AI}$ is tangent to the circumscribed circle of $\vartriangle BMI$.