Given a trapezoid $ABCD$ ($AD \parallel BC$) with $\angle ABC > 90^\circ$ . Point $M$ is chosen on the lateral side $AB$. Let $O_1$ and $O_2$ be the circumcenters of the triangles $MAD$ and $MBC$, respectively. The circumcircles of the triangles $MO_1D$ and $MO_2C$ meet again at the point $N$. Prove that the line $O_1O_2$ passes through the point $N$.
2013 International Zhautykov Olympiad
January 15th - Day 1
Find all odd positive integers $n>1$ such that there is a permutation $a_1, a_2, a_3, \ldots, a_n$ of the numbers $1, 2,3, \ldots, n$ where $n$ divides one of the numbers $a_k^2 - a_{k+1} - 1$ and $a_k^2 - a_{k+1} + 1$ for each $k$, $1 \leq k \leq n$ (we assume $a_{n+1}=a_1$).
Let $a, b, c$, and $d$ be positive real numbers such that $abcd = 1$. Prove that \[\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(d+1)}{1+cd+d} + \frac{(c-1)(a+1)}{1+da+a} + \frac{(d-1)(b+1)}{1+ab+b} \geq 0.\] Proposed by Orif Ibrogimov, Uzbekistan.
January 16th - Day 2
A quadratic trinomial $p(x)$ with real coefficients is given. Prove that there is a positive integer $n$ such that the equation $p(x) = \frac{1}{n}$ has no rational roots.
Given convex hexagon $ABCDEF$ with $AB \parallel DE$, $BC \parallel EF$, and $CD \parallel FA$ . The distance between the lines $AB$ and $DE$ is equal to the distance between the lines $BC$ and $EF$ and to the distance between the lines $CD$ and $FA$. Prove that the sum $AD+BE+CF$ does not exceed the perimeter of hexagon $ABCDEF$.
A $10 \times 10$ table consists of $100$ unit cells. A block is a $2 \times 2$ square consisting of $4$ unit cells of the table. A set $C$ of $n$ blocks covers the table (i.e. each cell of the table is covered by some block of $C$ ) but no $n -1$ blocks of $C$ cover the table. Find the largest possible value of $n$.