Let $a, b, c$, and $d$ be positive real numbers such that $abcd = 1$. Prove that \[\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(d+1)}{1+cd+d} + \frac{(c-1)(a+1)}{1+da+a} + \frac{(d-1)(b+1)}{1+ab+b} \geq 0.\] Proposed by Orif Ibrogimov, Uzbekistan.
Problem
Source: International Zhautykov Olympiad 2013 - D1 - P3
Tags: inequalities, inequalities unsolved
17.01.2013 16:55
$LHS+4=\left(\frac{(a-1)(c+1)}{1+bc+c}+1\right) + \left(\frac{(b-1)(d+1)}{1+cd+d}+1\right) + \left(\frac{(c-1)(a+1)}{1+da+a} +1\right)+ \left(\frac{(d-1)(b+1)}{1+ab+b}+1\right)$ $=\frac{a+bc+ac}{1+bc+c}+\frac{b+cd+bd}{1+cd+d}+\frac{c+da+ca}{1+da+a}+\frac{d+ab+bd}{1+ab+b}$ $=\frac{(a+bc+ac)(\frac{1}{a}+bc+\frac{c}{a})}{(1+bc+c)(\frac{1}{a}+bc+\frac{c}{a})}+\frac{(b+cd+bd)(\frac{1}{b}+cd+\frac{d}{b})}{(1+cd+d)(\frac{1}{b}+cd+\frac{d}{b})}+\frac{(c+da+ca)(\frac{1}{c}+da+\frac{a}{c})}{(1+da+a)(\frac{1}{c}+da+\frac{a}{c})}+\frac{(d+ab+bd)(\frac{1}{d}+ab+\frac{b}{d})}{(1+ab+b)(\frac{1}{d}+ab+\frac{b}{d})}$ $\ge\frac{(1+bc+c)^2}{(1+bc+c)(\frac{1}{a}+bc+\frac{c}{a})}+\frac{(1+cd+d)^2}{(1+cd+d)(\frac{1}{b}+cd+\frac{d}{b})}+\frac{(1+da+a)^2}{(1+da+a)(\frac{1}{c}+da+\frac{a}{c})}+\frac{(1+ab+b)^2}{(1+ab+b)(\frac{1}{d}+ab+\frac{b}{d})}$ $=\frac{a(1+bc+c)}{(1+cd+d)}+\frac{b(1+cd+d)}{(1+da+a)}+\frac{c(1+da+a)}{(1+ab+b)}+\frac{d(1+ab+b)}{(1+bc+c)}\ge 4=RHS+4$ PS : oops actually my solution is just the same with the above solution, only without the subs
18.01.2013 05:57
Let $a, b, c$ be positive real numbers such that $abc= 1$. Prove that \[\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(a+1)}{1+ca+a} + \frac{(c-1)(b+1)}{1+ab+b} \geq 0.\]
18.01.2013 19:30
$abcd=1 \implies$ we can make substitution: $a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{t}, d=\frac{t}{x}$. Then our inequality becomes to: \[\frac{(x-y)(z+t)}{y(y+z+t)}+\frac{(y-z)(t+x)}{z(x+z+t)}+\frac{(z-t)(x+y)}{t(x+y+t)}+\frac{(t-x)(y+z)}{x(x+y+z)}\ge 0\] It is equivalent to \begin{align*} \left(\frac{(x-y)(z+t)}{y(y+z+t)}+1\right)+\left(\frac{(y-z)(t+x)}{z(x+z+t)}+1\right)+\left(\frac{(z-t)(x+y)}{t(x+y+t)}+1\right)+\left(\frac{(t-x)(y+z)}{x(x+y+z)}+1\right)\ge 4. \end{align*} or \[\frac{y^{2}+xz+xt}{y(y+z+t)}+\frac{z^{2}+yt+xy}{z(x+z+t)}+\frac{t^{2}+zx+yz}{t(x+y+t)}+\frac{x^{2}+ty+tz}{x(x+y+z)}\ge 4\] From Cauchy-Schwarz inequality we have: $(y^{2}+xz+xt)(1+\frac{z}{x}+\frac{t}{x})\ge (y+z+t)^{2}$. This means \[\frac{y^{2}+xz+xt}{y(y+z+t)}\ge \frac{x(y+z+t)}{y(x+z+t)}.\] Similarly, we have \begin{align*} \frac{z^{2}+yt+xy}{z(x+z+t)}\ge \frac{y(x+z+t)}{z(x+y+t)}, \quad \frac{t^{2}+zx+yz}{t(x+y+t)}\ge \frac{z(x+y+t)}{t(x+y+z)}, \quad \frac{x^{2}+ty+tz}{x(x+y+z)}\ge \frac{t(x+y+z)}{x(y+z+t)}. \end{align*} So, we need to prove that \[\frac{x(y+z+t)}{y(x+z+t)}+\frac{y(x+z+t)}{z(x+y+t)}+\frac{z(x+y+t)}{t(x+y+z)}+\frac{t(x+y+z)}{x(y+z+t)}\ge 4.\] It holds from $AM-GM$. Because product of fractions is equal to 1. Nice problem!
21.01.2013 09:04
I have the same solution but I used Cauchy-Shwartz in another form: $ \frac{xt+xz+y^{2}}{y+t+z}= \frac{t^{2}}{ \frac{yt}{x}+ \frac{t^{2}}{x}+ \frac{zt}{x}}+ \frac{z^{2}}{ \frac{yz}{x} + \frac{tz}{x} + \frac{z^{2}}{x}} + \frac{y^{2}}{y+t+z} \geq \frac{x(y+t+z)^{2}}{(y+t+z)(x+t+z)} = \frac{x(y+t+z)}{x+t+z}$
31.01.2013 03:01
sqing wrote: Let $a, b, c$ be positive real numbers such that $abc= 1$. Prove that \[\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(a+1)}{1+ca+a} + \frac{(c-1)(b+1)}{1+ab+b} \geq 0.\] $\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(a+1)}{1+ca+a} + \frac{(c-1)(b+1)}{1+ab+b} \geq 0.$ $\Leftrightarrow \frac{a+b}{1+bc+c} + \frac{b+c}{1+ca+a} + \frac{c+a}{1+ab+b} \geq2.$ $\Leftrightarrow (\frac{1}{1+bc+c} + \frac{1}{1+ca+a} + \frac{1}{1+ab+b} )(a+b+c) \geq3.$ $\Leftrightarrow a+b+c \geq3.$ http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=2920865 http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&t=556256&p=3248160#p3248160
15.07.2014 08:32
matrix41 wrote: $LHS+4=\left(\frac{(a-1)(c+1)}{1+bc+c}+1\right) + \left(\frac{(b-1)(d+1)}{1+cd+d}+1\right) + \left(\frac{(c-1)(a+1)}{1+da+a} +1\right)+ \left(\frac{(d-1)(b+1)}{1+ab+b}+1\right)$ $=\frac{a+bc+ac}{1+bc+c}+\frac{b+cd+bd}{1+cd+d}+\frac{c+da+ca}{1+da+a}+\frac{d+ab+bd}{1+ab+b}$ $=\frac{(a+bc+ac)(\frac{1}{a}+bc+\frac{c}{a})}{(1+bc+c)(\frac{1}{a}+bc+\frac{c}{a})}+\frac{(b+cd+bd)(\frac{1}{b}+cd+\frac{d}{b})}{(1+cd+d)(\frac{1}{b}+cd+\frac{d}{b})}+\frac{(c+da+ca)(\frac{1}{c}+da+\frac{a}{c})}{(1+da+a)(\frac{1}{c}+da+\frac{a}{c})}+\frac{(d+ab+bd)(\frac{1}{d}+ab+\frac{b}{d})}{(1+ab+b)(\frac{1}{d}+ab+\frac{b}{d})}$ $\ge\frac{(1+bc+c)^2}{(1+bc+c)(\frac{1}{a}+bc+\frac{c}{a})}+\frac{(1+cd+d)^2}{(1+cd+d)(\frac{1}{b}+cd+\frac{d}{b})}+\frac{(1+da+a)^2}{(1+da+a)(\frac{1}{c}+da+\frac{a}{c})}+\frac{(1+ab+b)^2}{(1+ab+b)(\frac{1}{d}+ab+\frac{b}{d})}$ $=\frac{a(1+bc+c)}{(1+cd+d)}+\frac{b(1+cd+d)}{(1+da+a)}+\frac{c(1+da+a)}{(1+ab+b)}+\frac{d(1+ab+b)}{(1+bc+c)}\ge 4=RHS+4$ PS : oops actually my solution is just the same with the above solution, only without the subs I think it is $=\dfrac{ad(1+bc+c)}{(1+cd+d)}+\dfrac{ba(1+cd+d)}{(1+da+a)}+\dfrac{cb(1+da+a)}{(1+ab+b)}+\dfrac{dc(1+ab+b)}{(1+bc+c)}\ge 4 $ (By Cô-si and $abcd=1$)
02.01.2022 17:30
Essentially as the previous solutions, but with a (in my opinion) more intuitive use of the Engel form of Cauchy-Schwarz. Firstly, to get rid of $abcd=1$ we use the standard substitution $a=\frac{x}{y}$, $b=\frac{y}{z}$, $c=\frac{z}{t}$, $d=\frac{t}{x}$ and thus require $\sum_{x,y,z,t} \frac{(x-y)(z+t)}{y(y+z+t)}\geq 0$. To get rid of negative terms (as most well known applicable inequalities are for positive real numbers) we add $1$ to each of the $4$ summands, to obtain the equivalent $\sum_{x,y,z,t} \frac{xz+xt+y^2}{y(y+z+t)} \geq 4$. Now having in mind that Cauchy in Engel form is from the best inequalities to manipulate fractions, we would like to have squares in the numerators. One way to do that is to switch from $xz$ to $x^2z^2$, from $xt$ to $x^2t^2$ and keep $y^2$ as it is, but in that case things will (probably?) not work. So it would be better if we also switch from $y^2$ to $x^2y^2$. That is, rewrite $\frac{xz+xt+y^2}{y(y+z+t)}$ as $\frac{x^2z^2}{xyz(y+z+t)} + \frac{x^2t^2}{xyt(y+z+t)} + \frac{x^2y^2}{x^2y(y+z+t)}$ and then use the Engel form to obtain that the latter is at least $\frac{(xz+xt+xy)^2}{y(y+z+t)(xz+xt+x^2)} = \frac{x(y+z+t)}{y(x+z+t)}$. It remains to notice easily that $\sum_{x,y,z,t} \frac{x(y+z+t)}{y(x+z+t)} \geq 4$ by AM-GM.