Let $ABC$ be a triangle, and let $D, E$ and $F$ be the feet of the altitudes from $A, B$ and $C,$ respectively. A circle $\omega_A$ through $B$ and $C$ crosses the line $EF$ at $X$ and $X'$. Similarly, a circle $\omega_B$ through $C$ and $A$ crosses the line $FD$ at $Y$ and $Y',$ and a circle $\omega_C$ through $A$ and $B$ crosses the line $DE$ at $Z$ and $Z'$. Prove that $X, Y$ and $Z$ are collinear if and only if $X', Y'$ and $Z'$ are collinear. Vlad Robu
2020 Stars of Mathematics
Seniors
Given a positive integer $k,$ prove that for any integer $n \geq 20k,$ there exist $n - k$ pairwise distinct positive integers whose squares add up to $n(n + 1)(2n + 1)/6.$ The Problem Selection Committee
Determine the primes $p$ for which the numbers $2\lfloor p/k\rfloor - 1, \ k = 1,2,\ldots, p,$ are all quadratic residues modulo $p.$ Vlad Matei
Prove that, if every three consecutive vertices of a convex $n{}$-gon, $n\geqslant 4$, span a triangle of area at least 1, then the area of the $n{}$-gon is (strictly) greater than $(n\log_2 n)/4-1/2.$ Radu Bumbăcea & Călin Popescu
Juniors
Let $a_1,a_2,a_3,a_4$ be positive real numbers satisfying \[\sum_{i<j}a_ia_j=1.\]Prove that \[\sum_{\text{sym}}\frac{a_1a_2}{1+a_3a_4}\geq\frac{6}{7}.\]* * *
Let $ABC$ be a triangle, let $I$ be its incentre and let $D$ be the orthogonal projection of $I$ on $BC.$ The circle $\odot(ABC)$ crosses the line $AI$ again at $M,$ and the line $DM$ again at $N.$ Prove that the lines $AN$ and $IN$ are perpendicular. Freddie Illingworth & Dominic Yeo
Determine all integers $n>1$ whose positive divisors add up to a power of $3.$ Andrei Bâra
Let $a_0 = 1, \ a_1 = 2,$ and $a_2 = 10,$ and define $a_{k+2} = a_{k+1}^3+a_k^2+a_{k-1}$ for all positive integers $k.$ Is it possible for some $a_x$ to be divisible by $2021^{2021}?$ Flavian Georgescu