2023 Baltic Way

1

Find all strictly increasing sequences of positive integers $a_1, a_2, \ldots$ with $a_1=1$, satisfying $$3(a_1+a_2+\ldots+a_n)=a_{n+1}+\ldots+a_{2n}$$for all positive integers $n$.

2

Let $a_1, a_2, \ldots, a_{2023}$ be positive reals such that $\sum_{i=1}^{2023}a_i^i=2023$. Show that $$\sum_{i=1}^{2023}a_i^{2024-i}>1+\frac{1}{2023}.$$

3

Denote a set of equations in the real numbers with variables $x_1, x_2, x_3 \in \mathbb{R}$ Flensburgian if there exists an $i \in \{1, 2, 3\}$ such that every solution of the set of equations where all the variables are pairwise different, satisfies $x_i>x_j$ for all $j \neq i$. Find all positive integers $n \geq 2$, such that the following set of two equations $a^n+b=a$ and $c^{n+1}+b^2=ab$ in three real variables $a,b,c$ is Flensburgian.

4

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(f(x)+y)+xf(y)=f(xy+y)+f(x)$$for reals $x, y$.

5

Find the smallest positive real $\alpha$, such that $$\frac{x+y} {2}\geq \alpha\sqrt{xy}+(1 - \alpha)\sqrt{\frac{x^2+y^2}{2}}$$for all positive reals $x, y$.

6

Let $n$ be a positive integer. Each cell of an $n \times n$ table is coloured in one of $k$ colours where every colour is used at least once. Two different colours $A$ and $B$ are said to touch each other, if there exists a cell coloured in $A$ sharing a side with a cell coloured in $B$. The table is coloured in such a way that each colour touches at most $2$ other colours. What is the maximal value of $k$ in terms of $n$?

7

A robot moves in the plane in a straight line, but every one meter it turns $90^{\circ}$ to the right or to the left. At some point it reaches its starting point without having visited any other point more than once, and stops immediately. What are the possible path lengths of the robot?

8

In the city of Flensburg there is a single, infinitely long, street with housesnumbered $2, 3, \ldots$. The police in Flensburg is trying to catch a thief who every night moves from the house where she is currently hiding to one of its neighbouring houses. To taunt the local law enforcement the thief reveals every morning the highest prime divisor of the number of the house she has moved to. Every Sunday afternoon the police searches a single house, and they catch the thief if they search the house she is currently occupying. Does the police have a strategy to catch the thief in finite time?

9

Determine if there exists a triangle that can be cut into $101$ congruent triangles.

10

On a circle, $n \geq 3$ points are marked. Each marked point is coloured red, green or blue. In one step, one can erase two neighbouring marked points of different colours and mark a new point between the locations of the erased points with the third colour. In a final state, all marked points have the same colour which is called the colour of the final state. Find all $n$ for which there exists an initial state of $n$ marked points with one missing colour, from which one can reach a final state of any of the three colours by applying a suitable sequence of steps.

11

Let $ABC$ be triangle with $A$-excenter $J$. The reflection of $J$ in $BC$ is $K$. The points $E$ and $F$ are on $BJ, CJ$ such that $\angle EAB=\angle CAF=90^{\circ}$. Prove that $\angle FKE+\angle FJE=180^{\circ}$.

12

Let $ABC$ be an acute triangle with $AB>AC$. The internal angle bisector of $\angle BAC$ meets $BC$ at $D$. Let $O$ be the circumcenter of $ABC$ and let $AO$ meet $BC$ at $E$. Let $J$ be the incenter of triangle $AED$. Show that if $\angle ADO=45^{\circ}$, then $OJ=JD$.

13

Let $ABC$ be an acute triangle with $AB<AC$ and incenter $I$. Let $D$ be the projection of $I$ onto $BC$. Let $H$ be the orthocenter of $ABC$ and suppose that $\angle IDH=\angle CBA-\angle ACB$. Prove that $AH=2ID$.

14

Let $ABC$ be a triangle with centroid $G$. Let $D, E, F$ be the circumcenters of triangles $BCG, CAG, ABG$. Let $X$ be the intersection of the perpendiculars from $E$ to $AB$ and from $F$ to $AC$. Prove that $DX$ bisects $EF$.

15

Let $\omega_1$ and $\omega_2$ be two circles with no common points, such that any of them is not inside the other one. Let $M, N$ lie on $\omega_1, \omega_2$, such that the tangents at $M$ to $\omega_1$ and $N$ to $\omega_2$ meet at $P$, such that $PM=PN$. The circles $\omega_1$, $\omega_2$ meet $MN$ at $A, B$. The lines $PA, PB$ meet $\omega_1, \omega_2$ at $C, D$. Show that $\angle BCN=\angle ADM$.

16

Prove that there exist nonconstant polynomials $f, g$ with integer coefficients, such that for infinitely many primes $p$, $p \nmid f(x)-g(y)$ for any integers $x, y$.

17

Find all pairs of positive integers $(a, b)$, such that $S(a^{b+1})=a^b$, where $S(m)$ denotes the digit sum of $m$.

18

Let $p>7$ be a prime and let $A$ be subset of $\{0,1, \ldots, p-1\}$ with size at least $\frac{p-1}{2}$. Show that for each integer $r$, there exist $a, b, c, d \in A$, not necessarily distinct, such that $ab-cd \equiv r \pmod p$.

19

Show that $S(2^{2^{2 \cdot 2023}})>2023$, where $S(m)$ denotes the digit sum of $m$.

20

Let $n$ be a positive integer. A German set in an $n \times n$ square grid is a set of $n$ cells which contains exactly one cell in each row and column. Given a labelling of thecells with the integers from $1$ to $n^2$ using each integer exactly once, we say that an integer is a German product if it is the product of the labels of the cells in a German set. (a) Let $n=8$. Determine whether there exists a labelling of an $8 \times 8$ grid such that the following condition is fulfilled: The difference of any two German products is alwaysdivisible by $65$. (b) Let $n=10$. Determine whether there exists a labelling of a $10 \times 10$ grid such that the following condition is fulfilled: The difference of any two German products is always divisible by $101$.