Show an infinite sequence $a_1, a_2, \ldots$ of integers with both of the following properties: • $a_i \neq 0$ for every positive integer $i$, that is, no term in the sequence is equal to zero; • for all positive integer $n$, $a_n + a_{2n} + \ldots + a_{2023n} = 0$.
2023 Brazil National Olympiad
Level 3
Day 1
Let $ABC$ be a right triangle in $B$, with height $BT$, $T$ on the hypotenuse $AC$. Construct the equilateral triangles $BTX$ and $BTY$ so that $X$ is in the same half-plane as $A$ with respect to $BT$ and $Y$ is in the same half-plane as $C$ with respect to $BT$. Point $P$ is the intersection of $AY$ and $CX$. Show that $$PA \cdot BC = PB \cdot CA = PC \cdot AB.$$
Let $n$ be a positive integer. Humanity will begin to colonize Mars. The SpaceY and SpaceZ agencies will be responsible for traveling between the planets. To prevent the rockets from colliding, they will travel alternately, with SpaceY making the first trip. On each trip, the responsible agency will do one of two types of mission: (i) choose a positive integer $k$ and take $k$ people to Mars, creating a new colony on the planet and settling them in that colony; (ii) choose some existing colony on Mars and a positive integer $k$ strictly smaller than the population of that colony, and bring $k$ people from that colony back to Earth. To maintain the organization on Mars, a mission cannot result in two colonies with the same population and the number of colonies must be at most $n$. The first agency that cannot carry out a mission will go bankrupt. Determine, in terms of $n$, which agency can guarantee that it will not go bankrupt first.
Day 2
Let $x, y, z$ be three real distinct numbers such that $$\begin{cases} x^2-x=yz \\ y^2-y=zx \\ z^2-z=xy \end{cases}$$Show that $-\frac{1}{3} < x,y,z < 1$.
Let $m$ be a positive integer with $m \leq 2024$. Ana and Banana play a game alternately on a $1\times2024$ board, with squares initially painted white. Ana starts the game. Each move by Ana consists of choosing any $k \leq m$ white squares on the board and painting them all green. Each Banana play consists of choosing any sequence of consecutive green squares and painting them all white. What is the smallest value of $m$ for which Ana can guarantee that, after one of her moves, the entire board will be painted green?
For a positive integer $k$, let $p(k)$ be the smallest prime that does not divide $k$. Given a positive integer $a$, define the infinite sequence $a_0, a_1, \ldots$ by $a_0 = a$ and, for $n > 0$, $a_n$ is the smallest positive integer with the following properties: • $a_n$ has not yet appeared in the sequence, that is, $a_n \neq a_i$ for $0 \leq i < n$; • $(a_{n-1})^{a_n} - 1$ is a multiple of $p(a_{n-1})$. Prove that every positive integer appears as a term in the sequence, that is, for every positive integer $m$ there is $n$ such that $a_n = m$.
Level 2 / Junior
Day 1
A positive integer is called vaivém when, considering its representation in base ten, the first digit from left to right is greater than the second, the second is less than the third, the third is bigger than the fourth and so on alternating bigger and smaller until the last digit. For example, $2021$ is vaivém, as $2 > 0$ and $0 < 2$ and $2 > 1$. The number $2023$ is not vaivém, as $2 > 0$ and $0 < 2$, but $2$ is not greater than $3$. a) How many vaivém positive integers are there from $2000$ to $2100$? b) What is the largest vaivém number without repeating digits? c) How many distinct $7$-digit numbers formed by all the digits $1, 2, 3, 4, 5, 6$ and $7$ are vaivém?
Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.
Let $n$ be a positive integer. Show that there are integers $x_1, x_2, \ldots , x_n$, not all equal, satisfying $$\begin{cases} x_1^2+x_2+x_3+\ldots+x_n=0 \\ x_1+x_2^2+x_3+\ldots+x_n=0 \\ x_1+x_2+x_3^2+\ldots+x_n=0 \\ \vdots \\ x_1+x_2+x_3+\ldots+x_n^2=0 \end{cases}$$if, and only if, $2n-1$ is not prime.
Day 2
Determine the smallest integer $k$ for which there are three distinct positive integers $a$, $b$ and $c$, such that $$a^2 =bc \text{ and } k = 2b+3c-a.$$
An integer $n \geq 3$ is fabulous when there exists an integer $a$ with $2 \leq a \leq n - 1$ for which $a^n - a$ is divisible by $n$. Find all the fabulous integers.
Same as Level 3 - P5 - 6