2011 Croatia Team Selection Test

Day 1

1

Let $a,b,c$ be positive reals such that $a+b+c=3$. Prove the inequality \[\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\geq \frac{3}{2}.\]

2

There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).

3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.

4

We define the sequence $x_n$ so that \[x_1=a, x_2=b, x_n=\frac{{x_{n-1}}^2+{x_{n-2}}^2}{x_{n-1}+x_{n-2}} \quad \forall n \geq 3.\] Where $a,b >1$ are relatively prime numbers. Show that $x_n$ is not an integer for $n \geq 3$.

Day 2

1

We define a sequence $a_n$ so that $a_0=1$ and \[a_{n+1} = \begin{cases} \displaystyle \frac{a_n}2 & \textrm { if } a_n \equiv 0 \pmod 2, \\ a_n + d & \textrm{ otherwise. } \end{cases} \] for all postive integers $n$. Find all positive integers $d$ such that there is some positive integer $i$ for which $a_i=1$.

2

There are lamps in every field of $n\times n$ table. At start all the lamps are off. A move consists of chosing $m$ consecutive fields in a row or a column and changing the status of that $m$ lamps. Prove that you can reach a state in which all the lamps are on only if $m$ divides $n.$

3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

4

Find all pairs of integers $x,y$ for which \[x^3+x^2+x=y^2+y.\]