We define the sequence $x_n$ so that \[x_1=a, x_2=b, x_n=\frac{{x_{n-1}}^2+{x_{n-2}}^2}{x_{n-1}+x_{n-2}} \quad \forall n \geq 3.\] Where $a,b >1$ are relatively prime numbers. Show that $x_n$ is not an integer for $n \geq 3$.
Problem
Source:
Tags: induction, number theory, relatively prime, number theory unsolved
26.04.2011 16:08
Any ideas?
09.05.2011 17:27
gilbert wrote: Any ideas? My solution at http://www.math.vn/showthread.php?p=53292&posted=1#post53292 and http://vn.360plus.yahoo.com/math-2M/article?mid=40
14.02.2014 16:22
Any solutions?
17.02.2014 22:49
An idea is obviously induction! We get easily that $x_n\in Q$ and \[ x_n\equiv \frac{2(a^2+b^2)^k}{(a+b)(2(a^2+b^2)^{k-1})} \] for some $k\in N$ and for any $n\in N$. Suppose that for $m\in N$ and $x_m$ is integer, it's equivalent to $ \frac{2(a^2+b^2)^k}{a+b} \in Z $ and by $gcd(a,b)=1 $, $a,b>1$ we get a contradiction.
22.02.2014 05:16
Thank you mathuz:-)
15.06.2020 14:26
Any other solution?
29.09.2024 07:35
anyone solve this