Find positive integers $x, y, z$ such that $x > z > 1999 \cdot 2000 \cdot 2001 > y$ and $2000x^{2}+y^{2}= 2001z^{2}.$
2001 Hungary-Israel Binational
Individual
Day 1
Points $A, B, C, D$ lie on a line $l$, in that order. Find the locus of points $P$ in the plane for which $\angle{APB}=\angle{CPD}$.
Find all continuous functions $f : \mathbb{R}\to\mathbb{R}$ such that for all $x \in\mathbb{ R}$, \[f (f (x)) = f (x)+x.\]
Day 2
Let $P (x) = x^{3}-3x+1.$ Find the polynomial $Q$ whose roots are the fifth powers of the roots of $P$.
In a triangle $ABC$ , $B_{1}$ and $C_{1}$ are the midpoints of $AC$ and $AB$ respectively, and $I$ is the incenter. The lines $B_{1}I$ and $C_{1}I$ meet $AB$ and $AC$ respectively at $C_{2}$ and $B_{2}$ . If the areas of $\Delta ABC$ and $\Delta AB_{2}C_{2}$ are equal, find $\angle{BAC}$ .
Let be given $32$ positive integers with the sum $120$, none of which is greater than $60.$ Prove that these integers can be divided into two disjoint subsets with the same sum of elements.
Team
Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. The edges of $K_{n}(n \geq 3)$ are colored with $n$ colors, and every color is used. Show that there is a triangle whose sides have different colors.
Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. If $n \geq 5$ and $e(G_{n}) \geq \frac{n^{2}}{4}+2$, prove that $G_{n}$ contains two triangles that share exactly one vertex.
Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. If $e(G_{n}) \geq\frac{n\sqrt{n}}{2}+\frac{n}{4}$ ,prove that $G_{n}$ contains $C_{4}$ .
Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. (a) If $G_{n}$ does not contain $K_{2,3}$ , prove that $e(G_{n}) \leq\frac{n\sqrt{n}}{\sqrt{2}}+n$. (b) Given $n \geq 16$ distinct points $P_{1}, . . . , P_{n}$ in the plane, prove that at most $n\sqrt{n}$ of the segments $P_{i}P_{j}$ have unit length.
Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. (a) Let $p$ be a prime. Consider the graph whose vertices are the ordered pairs $(x, y)$ with $x, y \in\{0, 1, . . . , p-1\}$ and whose edges join vertices $(x, y)$ and $(x' , y')$ if and only if $xx'+yy'\equiv 1 \pmod{p}$ . Prove that this graph does not contain $C_{4}$ . (b) Prove that for infinitely many values $n$ there is a graph $G_{n}$ with $e(G_{n}) \geq \frac{n\sqrt{n}}{2}-n$ that does not contain $C_{4}$.